Фундаменты резервуаров из винтовых свай

Фундаменты под резервуары

Фундамент — это часть сооружения, передающая нагрузку от веса сооружения на грунты основания и распределяющая эту нагрузку на такую площадь основания, при которой давления по подошве не превышают расчетных. По форме в плане фундаменты бывают сплошные в виде плит под всем сооружением, ленточные—только под стены сооружения и столбчатые в виде отдельных опор. Выбор того или иного вида фундамента под вертикальные резервуары зависит от сопротивления грунта, могущего служить основанием, сжатию, пучинистостью грунта при сезонных промерзаниях, глубины его залегания, очертания сооружения в плане, а также от величины нагрузки и схемы передачи ее на грунты основания.

При устройстве фундамента резервуара должно быть предусмотрено проведение мероприятий по отводу грунтовых вод и атмосферных осадков из-под днища резервуара.

Все работы по устройству фундамента резервуара проводятся до начала его монтажа. Проектную отмостку основания (фундамента), фундамент под шахтную лестницу и опоры под подводящие трубопроводы рекомендуется выполнять после монтажа металлоконструкций резервуара.

В современной строительной практике используется большое количество типов фундаментов под резервуары. Выбор наиболее рационального типа зависит от объема резервуара и конкретных инженерно геологических условий. При этом характерным является стремление использовать фундаменты на естественном основании как наиболее дешевые с полным или частичным отказом от свай под днищем резервуара.

Кольцевые фундаменты

В сочетании с подсыпкой на основание часто практикуетcя фундамент под стенку. Так, в соответствии с ГОСТ 52910-2008 «…в качестве фундамента резервуара может быть использована грунтовая подушка (с железобетонным кольцом под стенкой и без него)… Для резервуаров объемом 2000 м3 и более под стенкой резервуара устанавливают железобетонное фундаментное кольцо шириной не менее 0,8 м для резервуаров объемом не более 3000 м3 и не менее 1,0 м – для резервуаров объемом более 3000 м3. Толщина кольца принимается не менее 0,3 м.». (см. рис. 1. -в)

Рис.2: Фундаменты РВС: а), в) гравийные; б) в форме железобетонного кольца; г) в виде подпорной стенки; 1 – подсыпка из гравия; 2 – стенка РВС; 3 – днище РВС; 4 – уплотненный песок; 5 – песчаная засыпка; 6 – грунт основания; 7 – железобетонное кольцо; 8 – асфальт; 9 – подсыпка; 10 – выравнивающий слой; 11 – дренажное отверстие; 12 – ПВХ-пленка; 13 – ж/б плита

При этом, исходя из практического опыта, такая конструкция фундамента обеспечивает устойчивость только прифундаментного слоя (подсыпки), практически не увеличивая жесткости узла сопряжения днища со стенкой. Также данная конструкция не влияет на неравномерность осадки основания резервуара.

В определенных условиях эффективен фундамент в виде кольцевой стенки, которая, прорезая слабые верхние слои грунта основания, может передать нагрузку на подстилающие плотные слои.

Также по требованию ГОСТ для площадок строительства с расчетной сейсмичностью 7 баллов и более фундаментное кольцо устраивают для всех резервуаров, независимо от объема, шириной не менее 1,5 м, а толщину кольца принимают не менее 0,4 м.

Фундаментное кольцо рассчитывают на основное, а для площадок строительства с сейсмичностью 7 баллов и более – также на особое сочетание нагрузок.

Существует практика совместно с подсыпками использовать кольцевые фундаменты из гравия или щебня, железобетонные кольцевые фундаменты, расположенные непосредственно под стенкой, а также фундаменты в виде железобетонной подпорной стенки, находящейся за пределами резервуара (рис 2).

При устройстве кольца в виде подпорной стенки подсыпка выполняется из песчанно-гравийной смеси или гравия.

Железобетонные фундаменты выполняют из монолитного железобетона, а поперечному сечению придают прямоугольную форму.

Также практикуется конструкция фундамента резервуара на естественном основании со щебеночным кольцом под стенкой. Такой фундамент эффективен при ожидаемой осадке не более 15 см. Его особенность состоит в том, что непосредственно под стенкой используется не песок, а щебень для создания щебеночной или гравийной насыпи высотой не менее 60 см, шириной по верху 1-2 м. (См. рис 3.).

Рис.3. Подушка из щебня под стенкой РВС. 1 – дренажные трубки; 2 – кольцевая подушка; 3 – асфальт; 4 – гидроизоляция; 5 – стенка; 6 – подсыпка из щебня; 7 – песок; 8 – песчаная подушка

Щебень укладывают слоями по 20 см и тщательно трамбуют. Непосредственно под днищем по всей его плоскости устраивают щебеночный слой (6) толщиной не менее 10 см и дополнительно закладывают дренажные трубки диаметром около 9 см.

Для широких резервуаров применяют следующие конструкции: под днищем устанавливают песчаный фундамент-подсыпку, а под стенкой – либо железобетонный, либо щебеночный кольцевой фундамент (в зависимости от грунтовых условий) (См. рис.4.).

Подсыпку под стенку с внешней стороны фундамента устанавливают с пологим откосом 1:5, который в нижней части поддерживается подпорной стенкой.

Насыпь оборудуют дренажными трубками и защищают асфальтовым покрытием.

Между днищем и железобетонной поверхностью железобетонного кольцевого фундамента имеется амортизационный асфальтовый слой толщиной не менее 20 см.

Для больших резервуаров с целью повышения безопасности постоянно разрабатываются дополнительные меры укрепления фундамента. Некоторые из них показаны на рис. 4.

Рис 4.: Фундаменты больших РВС: а) кольцевые; б), в) плитные; 1 – резервуар; 2 – кольцевые фундаменты; 3 – цементно-песчаный слой; 4 – подушка; 5 – железобетонная плита; 6 – кольцевая стенка

Песчано-гравийную подушку покрывают смесью песка, щебня, асфальтовой эмульсии и цемента, затем уплотняют укатыванием. Получившаяся поверхность, в результате, снимает часть нагрузки с подушки и передает ее на железобетонное кольцо.

Также устраивают фундаменты в виде железобетонных плит. В этих случаях резервуар опираются на железобетонную плиту, установленную либо на поверхности основания, либо ниже планировочной отметки. Железобетонная стенка по периметру плиты заглубляется ниже ее подошвы и служит для снижения бокового перемещения грунта.

Свайные фундаменты

3.2.1. Традиционный подход к устройству свайных фундаментов

Такой тип фундамента достаточно часто применяется на площадках, сложенных слабыми грунтами (См. рис.5.). Опыт строительства других промышленных и гражданских объектов показывает, что при помощи свай во многих случаях удается добиться допустимого уровня осадки сооружения.

Рис. 5: Свайный фундамент РВС: 1 – резервуар; 2 – плита ростверка; 3 – слабая морская глина; 4 – плотная глина

Однако опыт устройства свайных фундаментов в резервуаростроении показывает, что не всегда удается добиться желаемого результата. При этом данный тип фундамента весьма затратен и, по уровню капиталовложений, приближается к стоимости самих металлоконструкций.

Неоднократно зафиксированы случаи, когда при гидроиспытаниях смонтированного на свайном фундаменте резервуара осадка его основания превышала проектную и составляла до половины величины осадки, предусмотренной на весь срок службы резервуара.

Неэффективность применения свайных фундаментов в резервуаростроении может быть объяснена тем обстоятельством, что при больших размерах фундаментов в плане сваи, длина которых составляет обычно 0,25 диаметра резервуара и менее, оказываются в зоне действия наибольших вертикальных напряжений в основании резервуара. Поэтому некоторое уменьшение напряжений за счет увеличения глубины заложения условного фундамента мало сказывается на осадке такого фундамента.

Применение свайных фундаментов может оказаться даже опасным в тех случаях, когда на больших глубинах в основании резервуаров находятся слои более сжимаемых грунтов. Обнаружить такие слои

не всегда возможно из-за технических трудностей, связанных с бурением и отбором образцов грунта с больших глубин.

Обычно специалисты полагают, что свайный фундамент с монолитным ростверком представляет собой довольно жесткую конструкцию. Данные, полученные в результате наблюдения за осадками резервуаров на свайных фундаментах, убедительно опровергают такую точку зрения.

3.2.2. Фундаменты с забивкой свай под всем днищем и железобетонным ростверком

Многолетней практикой строительства резервуаров на слабых водонасыщенных грунтах выработано несколько эффективных мероприятий по подготовке будущих оснований к строительству. Основная цель этих мероприятий – уплотнение слабых грунтов до начала строительства с целью улучшения их физико-механических характеристик.

Для этих целей используются призматические забивные сваи различной длины и сечения в сочетании с ростверками и плитами. При этом сваи, как правило, забиваются под всем днищем в виде сплошного свайного поля с расстоянием между сваями 1 м.

Фундаменты с забивкой свай под всем днищем и промежуточной подушкой

Также применяются фундаменты, в которых вместо железобетонного покрытия служит слой щебня или гранулированного материала, положенный поверх свай.

3.2.3 Кольцевой свайный фундамент

Также эффективным решением для устройства фундамента резервуаров на площадках со слабыми грунтами является кольцевой свайный фундамент. На рис. 8 показан его узел и общий вид.

Кольцевой монолитный железобетонный фундамент, воспринимающий нагрузку от стенки резервуара и передает эту нагрузку на плотные малосжимаемые грунты через:

  • щебеночную подушку,
  • бетонную подготовку,
  • монолитный железобетонный ростверк,
  • жестко заделанные в нем сваи расположенные в два ряда

Такой конструкцией достигается уменьшение неравномерности осадки основания под стенкой резервуара.

3.2.4. Кольцевой свайный фундамент со смещением:

Как усовершенствованный вариант кольцевого свайного фундамента применяется смещенный фундамент под резервуары.

Часто одним из решений проблемы осадок резервуара является смещение монолитного железобетонного кольца и кольцевого свайного фундамент относительно стенки резервуара. Величины, на которые осуществляется смещение определяются в зависимости от локальных характеристик грунтового основания, нагрузок от конструкции и количества рядов свай в ростверке

В результате такого решения могут быть существенно снижены неравномерности осадок по периметру емкости и всего сооружения в целом в период его эксплуатации.

Работа по возведению такого фундамента осуществляется следующим образом: производится планировка грунтового основания, затем забиваются сваи до проектной отметки, расположение которых определятся в зависимости от локальных характеристик грунтового основания, нагрузок от конструкции и количества рядов свай в ростверке. По оголовкам свай устраивается монолитный железобетонный кольцевой ростверк, производится отсыпка щебеночной подушки, поверх которой бетонируется монолитное железобетонное кольцо. Выполняются планировка и отсыпка песчаной подушки под днище емкости, после чего осуществляется монтаж металлических конструкций резервуара.

3.3. Конструкции фундаментов для строительства резервуаров в сложных геологических условиях:

3.3.1. Железобетонный усиленный ленточный фундамент

При большой толще слабых грунтов для предотвращения значительных неравномерных осадок естественных оснований целесообразно увеличивать жесткость кольцевого фундамента. С этой целью может быть использован массивный ленточный железобетонный фундамент под стенку резервуара, который обеспечивает достаточную жесткость конструкций по окружности.

Высота фундамента под резервуары определяется из условия заглубления подошвы ниже границы сезонного промерзания грунта. Для уменьшения высоты фундамента целесообразно над ним устраивать промежуточную щебеночную подушку, обеспечивающую передачу нагрузки от резервуара на фундамент. Так как нагрузка на такой фундамент мала, то площадь его поперечного сечения может быть сравнительно небольшой. По сторонам фундамент обсыпают непучинистым материалом.

При развитии больших неравномерных осадок по контуру такой фундамент дает возможность выровнять край резервуара. С этой целью под просевшей частью резервуара в щебеночной подушке выполняют приямок и устанавливают подъемное устройство (например, домкрат), опирающийся на железобетонный фундамент. После подъема края резервуара на необходимую отметку подъемное устройство снимают и приямок засыпают.

Использование сборных железобетонных элементов позволяет снизить объем мокрых процессов при производстве работ и значительно повысить производительность труда на работах нулевого цикла.

3.3.2. Железобетонное кольцо по внешнему контуру стенки

Читайте также:  Приложение В справочное Минимальные расстояния от подземных наземных с обвалованием газопроводов до зданий и сооружений

При заполнении резервуаров больших объемов в месте примыкания стенок к днищу возникает узловой момент, достигающий значительной величины и влияющий на напряженно – деформированное состояние днища и основания под ним. Для уменьшения крутящего момента и увеличения жесткости узла «стенка—днище» предложено применять железобетонное кольцо, устроенное по внешнему контуру стенки резервуара совместно с металлическими ребрами жесткости в виде раскосов(См. рис.6). Число раскосов определяется конструктивно или расчетом в зависимости от объема резервуара.

Рис. 6: Усиление узла примыкания стенки к днищу: 1 – песчаная подсыпка; 2 – раскосы; 3 – железобетонное кольцо; 4 – стенка РВС; 5 – днище РВС; 6 – основание

Источник



Фундаменты резервуаров из винтовых свай

Резервуар – герметично закрываемое или открытое емкостное устройство, наполняемое жидким (вода, нефтепродукты, спирт) или газообразным веществом, сыпучим материалом для его последующего накопления, транспортировки или хранения.

Подобные сосуды востребованы в отраслях:

  • нефтегазовой;
  • транспортной;
  • химической;
  • пищевой промышленности.

По типу расположения резервуары бывают:

  • надземные;
  • подземные;
  • подводные.

По типу конструкции;

  • вертикальные и горизонтальные цилиндрические;
  • шаровые;
  • каплевидные;
  • прямоугольные.

По условиям эксплуатации:

  • стационарные;
  • переносные/перемещаемые;
  • плавающие.

1. Фундаменты из винтовых свай для резервуаров

При устройстве фундамента резервуара должно быть предусмотрено проведение мероприятий по отводу грунтовых вод и атмосферных осадков из-под днища конструкции.

Все работы по устройству фундамента резервуара проводятся до начала его монтажа. Отмостку, фундамент под шахтную лестницу и опоры под подводящие трубопроводы рекомендуется выполнять после монтажа металлоконструкций резервуара.

Выбор фундамента под емкости зависит от объема и особенностей сооружения (очертания в плане, величина нагрузки и схема ее передачи на грунты основания), а также от конкретных инженерно-геологических условий (сопротивление грунта, степень пучения при сезонных промерзаниях).

При условии наличия на площадке слабых грунтов, возможно строительство фундамента резервуара из винтовых свай.

2. Обустройство фундаментов резервуаров для Западно-Салымского месторождения

Компания «ГлавФундамент» приняла участие в реализации проекта по обустройству Западно-Салымского месторождения, выполнив численный анализ работы двухлопастных винтовых свай в качестве фундамента резервуаров.

Разработка Салымской группы месторождений, самым крупным из которых является Западно-Салымское – крупнейший инвестиционный проект по разработке нефти в России. Западно-Салымское месторождение открыто в 1987 году и охватывает 756 км 2 . На этой площади расположены 300 скважин, уровень добычи нефти здесь превышает 120 тысяч баррелей в сутки.

2.1. Геологические условия площадки строительства

Согласно отчету по инженерно-геологическим изысканиям площадка строительства представлена насыпными и глинистыми грунтами, а также суглинками от мягкопластичной до текучей консистенции с линзами пылеватого песка.

Подобные основания характеризуются низкой несущей способностью, а также высокой степенью пучинистости.

2.2. Расчеты фундаментной конструкции

В соответствии с предоставленными данными специалисты отдела НИКОР компании «ГлавФундамент» рекомендовали под объект сваи для сезоннопромерзающих грунтов широколопастные двухлопастные со следующими конструктивными параметрами:

  • диаметр лопастей – 490 мм;
  • конфигурация лопастей – для грунтов мягкопластичной консистенции;
  • толщина лопастей – 8 мм;
  • диаметр ствола – 159 мм;
  • толщина стенки ствола – 6 мм;
  • длина – 10 000 мм.

Моделирование НДС грунта вокруг сваи при действии вдавливающей нагрузки выполнялось численными методами. За несущую способность принималась нагрузка, воспринимаемая конструкцией при осадке равной 3 см. Материал винтовой двухлопастной сваи моделировался с использованием упругой модели Гука.

Проведенный анализ напряженно-деформированного состояния численными методами показал, что максимальное сопротивление по грунту достигается оптимальными геометрическими параметрами конструкции, а именно:

  • конфигурацией лопасти, которая позволяет минимизировать нарушение структуры грунта во время завинчивания (подробнее «Ключевые принципы подбора параметров лопастей»);
  • расстоянием между лопастями, шагом и углом наклона лопастей, которые обеспечивают включение в работу сваи околосвайного массива грунта (подробнее «Особенности расчета многолопастных винтовых свай»).

Таким образом, несущая способность свай по грунту при действии вдавливающей нагрузки составила 16,8 тс, при действии выдергивающей нагрузки – 15,3 тс. Эти значения значительно превысили расчетную силу сжатия, равную 4,1 тс.

Подбор толщины металлопроката и марки стали осуществлялся на основании данных о коррозионной активности грунтов на площадке строительства и в соответствии с требованиями к жесткости и прочности, а также с требованиями к сроку службы, установленными ГОСТ 27751 «Межгосударственный стандарт. Надежность строительных конструкций и оснований. Основные положения».

Для уточнения правильности подбора толщины металлопроката после выполнения расчета срока службы была выполнена проверка соответствия остаточной толщины стенки ствола проектным нагрузкам (подробнее «Расчет толщины стенки ствола»)

Грунтовые условия площадки строительства также требовали обязательного проведения расчетов на действие касательных сил морозного пучения в соответствии с СП 24.13330 «Свайные фундаменты».

В соответствии с данными ИГИ глубина сезонного промерзания для участка составляет 2,3 м. Проверка показала, что в этом случае сила воздействия касательных сил морозного пучения на сваю равна 92,8 кН, тогда как расчетное значение силы, удерживающей ее от выпучивания вследствие трения ее боковой поверхности о талый грунт, лежащий ниже расчетной глубины промерзания, составляет 148,2 кН. Следовательно, условие по обеспечению устойчивости на действие касательных сил морозного пучения выполняется.

По результатам выполненных работ винтовые сваи рекомендованной конструкции были изготовлены и установлены на объекте.

Источник

Фундаменты и основания под резервуары

Основание стоит рассматривать совместно с проектируемым сооружением, так как под воздействием веса сооружения и других всевозможных эксплуатационных воздействий грунты основания испытывают дополнительное давление, деформируются (уплотняются, оседают) и в свою очередь оказывают воздействие на сооружение.

Виды основания под резервуары

  • естественные — грунты которых находятся под подошвой фундамента в их природном залегании.
  • естественные с подсыпкой;
  • искусственные

Естественные основания

Естественные основания под резервуары — грунты которых находятся под подошвой фундамента в их природном залегании. Грунты под естественные основания должны обладать достаточным сопротивлением сжатию, а конкретнее грунты должны обладать следующими свойствами:

  • малой и равномерной сжимаемостью, то есть большой плотностью, обеспечивающей малую и равномерную осадку сооружения;
  • нерастворяемостью грунтовыми, дождевыми и талыми водами.

В процессе эксплуатации резервуара по мере уплотнения грунтов его основания происходит осадка фундамента. С целью выяснить степень влияния осадок на сооружение производится расчет оснований и фундаментов. Расчет основания резервуара заключается в вычислении давлений (напряжений) на грунты под подошвой фундамента и величин осадок грунтов основания, возможных при этих давлениях. При получении недопустимых величин осадок принимают соответствующие меры с целью уменьшения напряжений и ограничению осадок до допускаемых пределов. Последнее может быть достигнуто уширением подошвы фундамента или переходом к искусственному основанию.

Естественные основания с подсыпкой — переходная конструкция между естественными и искусственными основаниями (естественное основание с песчаной или грунтовой подушкой, выполняемой в виде подсыпки на основание).

Типовые основания резервуаров

Насыпь

Типовое основание под резервуар - насыпь

Насыпь в сочетании с песчаной подушкой

  1. Щебеночная или песчаная насыпь
  2. Песчаная подушка
  3. Слабый грунт

насыпь в сочетании с песчаной подушкой

Железобетонное кольцо под стенкой

  1. Щебеночная или песчаная насыпь
  2. Железобетонное кольцо
  3. Стенка РВС
  4. Днище РВС

железобетонное кольцо под стенкой

Подсыпка на основание выполняет следующие функции:

  • распределить давление от металлоконструкций резервуара на основание;
  • осуществить дренаж днища;
  • обеспечить антикоррозийную защиту днища.

Для подсыпки используют следующие материалы:

  • уплотненный крупный песок;
  • щебень;
  • гравий;
  • гравийно-песчаную смесь.

Для обеспечения антикоррозионной защиты резервуара, особенно днища, по верху подсыпки укладывают гидрофобный слой с добавлением вяжущих на основе нефтепродуктов. Как правило, применяется высота подсыпки 0,2 – 2,5 м. Эта величина зависит от результатов инженерно-геологических изысканий площадки строительства.

Поверхность подсыпки обычно устраивают так, чтобы она имела уклон от центра к периферии. Это обеспечивает компенсацию неравномерных осадок резервуара, а также облегчает приток хранимого продукта к откачивающим устройствам. На практике осадка днища резервуара может достигать 2 м, именно поэтому подъем центральной части днища может стать ключевым условием длительной работоспособности конструкции. В случае если на площадке строительства на небольшую глубину (до 3 м) залегают слабые или пучинистые грунты (в районах с глубоким сезонным промерзанием грунтов), практикуется их замена с местным уплотнением песчаным или глинистым грунтом, часто привозным. При более обширном слое залегания слабых грунтов такой метод зачастую экономически неэффективен в силу возрастания текущих расходов на выравнивание резервуаров, установленных таким способом.

Искусственные основания

  • искусственно упрочненные грунты основания (путем уплотнения, химического закрепления или забивки бетонных или песчаных свай);
  • свайные основания и фундаменты глубокого заложения, передающие нагрузку от сооружения на более прочные грунты, залегающие на большей глубине от поверхности земли;

Искусственные основания под слабые грунты

  • Для просадочных грунтов предусматривают устранение просадочных свойств в пределах всей просадочной толщи или устройство свайных фундаментов, полностью прорезающих просадочную толщу.
  • Для набухающих грунтов, в случае если расчетные деформации основания превышают предельные, предусматривают проведение следующих мероприятий:
    • полная или частичная замена слоя набухающего грунта не набухающим;
    • применение компенсирующих песчаных подушек;
    • устройство свайных фундаментов.
    • устройство свайных фундаментов;
    • для биогенных грунтов и илов – полная или частичная замена их песком, щебнем, гравием и т.д.;
    • предпостроечное уплотнение грунтов временной пригрузкой основания (допустимо проведение уплотнения грунтов временной нагрузкой в период гидроиспытания резервуаров по специальной программе).
    • устройство сплошной железобетонной плиты со швом скольжения между днищем резервуара и верхом плиты;
    • применение гибких соединений (компенсационных систем) в узлах подключения трубопроводов;
    • устройство приспособлений для выравнивания резервуаров.
    • заполнение карстовых полостей;
    • прорезка карстовых пород глубокими фундаментами;
    • закрепление закарстованных пород и (или) вышележащих грунтов.

    Размещение резервуаров в зонах активных карстовых процессов не допускается.

    При применении свайных фундаментов концы свай заглубляют в малосжимаемые грунты и обеспечивают требования к предельным деформациям резервуаров. Свайное основание может быть как под всей площадью резервуара – «свайное поле», так и «кольцевым» – под стенкой резервуара. Если применение данных мероприятий не исключает возможность превышения предельных деформаций основания или в случае нецелесообразности их применения, предусматривают специальные устройства (компенсаторы) в узлах подключения трубопроводов, обеспечивающие прочность и надежность узлов при осадках резервуаров, а также устройство для выравнивания резервуаров. При строительстве в районах распространения многолетнемерзлых грунтов при использовании грунтов основания по первому принципу (с сохранением грунтов в мерзлом состоянии в период строительства и эксплуатации) предусматривают их защиту от воздействия положительных температур хранимого в резервуарах продукта. Это достигается устройством проветриваемого подполья («высокий ростверк») или применением теплоизоляционных материалов в сочетании с принудительным охлаждением грунтов – «термостабилизацией».

    Методы укрепления грунта основания

    При строительстве резервуаров на площадках, сложенных мощной толщей слабых грунтов, возникают значительные неравномерные осадки основания, что существенно влияет на дальнейшую эксплуатацию резервуаров. Поэтому при строительстве резервуаров на слабых грунтах применяют специальные подготовки основания.

    Грунтовые подушки должны выполняться из послойно уплотненного при оптимальной влажности грунта, модуль деформации которого после уплотнения должен быть не менее 15 МПа, коэффициент уплотнения – не менее 0,90.

    Уклон откоса грунтовой подушки следует выполнять не более 1:1,5. Ширина горизонтальной части поверхности подушки за пределами окрайки должна быть:

    • 0,7 м. – для резервуаров объемом не более 1000 м 3 ;
    • 1,0 м. – для резервуаров объемом более 1000 м 3 ;
    • 1,0 м. – независимо от объема, для площадок строительства с расчетной сейсмичностью 7 и более баллов.

    Поверхность подушки за пределами периметра резервуара (горизонтальная и наклонная части) должна быть защищена отмосткой. Применяются разнообразные методы укрепления грунта основания (без его замены).

    Существующие методы:

    • Метод предварительного наполнения резервуара
    • Метод уплотнения основания глубинным водопонижением
    • Метод уплотнения основания насыпью
    • Метод уплотнения тяжелыми трамбовками
    • Метод химического и термического закрепления грунта

    Геологические и гидрогеологические исследования перед проектированием оснований и фундаментов резервуаров

    При проектировании фундамента цилиндрического резервуара необходимо изучить геологическое строение площадки, отведенной под застройку, и гидрогеологические условия.

    Глубина разведки грунтов, расположенных ниже подошвы фундамента, зависит от давления, передаваемого сооружением на основании, и принимается равной или более глубины активной зоны основания (сжимаемой толщи грунтов основания).

    Разведка грунтов производится шурфованием и бурением.

    • Шурф (нем. Schurf) – это вертикальная либо наклонная горная выработка глубиной до 40 м, которая проходится с поверхности земли для разведки полезных ископаемых, вентиляции, водоотлива, транспортирования материалов, спуска и подъема людей и т.д. Площадь поперечного сечения шурфа от 0,8 до 4 м2. Форма поперечного сечения шурфа может быть круглой, прямоугольной или квадратной.
    • Бурение скважин – это процесс сооружения направленной горной выработки большой длины и малого диаметра. Начало скважины от поверхности земли называют устьем, дно – забоем.

    Преимущества шурфования перед бурением заключаются в том, что образцы грунтов, взятые из шурфа, имеют ненарушенную структуру; по стенкам шурфа устанавливается род грунтов, мощность каждого пласта и их напластование, а на дне шурфа производится испытание сопротивления грунтов сжатию.

    Объем и характер исследования грунтов зависят от монументальности сооружения, рода и напластования грунтов и уровня грунтовых вод.

    При исследовании бурением в ответственных местах закладываются шурфы, и проверяется сопротивление грунтов основания сжатию пробными нагрузками.

    Месторасположение и число шурфов или скважин в каждом отдельном случае назначаются в соответствии с очертанием и размерами сооружения в плане и степенью однородности грунтов.

    Обычно шурфы или скважины закладываются вблизи периметра сооружения и наиболее ответственных его частей. В плане строительного участка шурфы или скважины должны образовать сетку со средними расстояниями в 25–30 м. Более детальная разведка производится в пределах сооружения.

    По данным исследования составляются план и геологические разрезы участка с обозначением рода грунта, напластования и уровня грунтовых вод. На основании физико-механических характеристик устанавливаются расчетные сопротивления грунтов, целесообразность использования площадки под строительство и род фундаментов под резервуары.

    Вообще, в процессе изысканий собираются следующие сведения о грунтах и грунтовых водах:

    • литологические колонки;
    • физико-механические характеристики грунтов (плотность грунтов ρ, удельное сцепление грунтов с, угол внутреннего трения φ, модуль деформации Е, коэффициент пористости е, показатель текучести IL и др.);
    • расчетный уровень грунтовых вод.

    Число геологических выработок (скважин) определяется площадью резервуара и должно быть не менее четырех (одна – в центре и три – в районе стенки, т. е. 0,9-1,2 радиуса резервуара).

    В дополнение к скважинам допускается исследование грунтов методом статического зондирования.

    При проведении инженерных изысканий следует предусматривать исследование грунтов на глубину активной зоны (ориентировочно 0,4-0,7 диаметра резервуара) в центральной части резервуара и не менее 0,7 активной зоны – в области стенки резервуара. При свайных фундаментах – на глубину активной зоны ниже подошвы условного фундамента (острия свай).

    Для районов распространения многолетнемерзлых грунтов проводятся инженерно-геокриологических изыскания. Данные изыскания должны обеспечить получение сведений о составе, состоянии и свойствах мерзлых и оттаивающих грунтов, криогенных процессов и образованиях, включая прогнозы изменения инженерно-геокриологических условий проектируемых резервуаров с геологической средой.

    Фундаменты под резервуары

    Фундамент — это часть сооружения, передающая нагрузку от веса сооружения на грунты основания и распределяющая эту нагрузку на такую площадь основания, при которой давления по подошве не превышают расчетные. В зависимости от формы фундаменты подразделяются на:

    • сплошные, в виде плит под всем сооружением;
    • ленточные, расположенные только под стеной сооружения;
    • столбчатые в виде отдельных опор.

    Выбор типа фундамента под резервуар зависит от многих факторов, самым важным, конечно является грунт, его характеристики (сжатие, пучинистость при сезонном промерзании, глубине залегания и пр.), от объема резервуара, а так же от величины нагрузок который будет передаваться на грунт. Наиболее рационально использовать фундаменты на естественном основании, по причине того, что этот способ наиболее дешевый, с полным или частичным отказом от свай под днищем резервуара. Перед строительством фундамента необходимо произвести отвод грунтовых вод и осадков из-под днища резервуара. Все работы по устройству фундамента под резервуар проводятся до начала его монтажа. Проектную отмостку основания (фундамента), фундамент под шахтную лестницу и опоры под подводящие трубопроводы рекомендуется выполнять после монтажа металлоконструкций резервуара.

    Источник

    Основания и фундаменты РД 16.01-60.30.00-КТН-026-1-04

    3.1 Проектирование оснований и фундаментов стальных вертикальных резервуаров выполняется в соответствии с действующими нормативными документами, приведенными в приложении Д и настоящими Нормами.

    (Измененная редакция, Изм. 2005 г.)

    3.2 Исходными данными для проектирования основания резервуара должны быть результаты инженерно-геологических изысканий, выполненные в соответствии с требованиями СНиП 11-02-96 и СП 11-105-97 и не позднее, чем за 1,5 года до начала проектирования.

    3.3 По совокупности свойств инженерно-геологические условия площадки для строительства резервуаров подразделяются на благоприятные, неблагоприятные и весьма неблагоприятные.

    3.4 Неблагоприятными для устройства оснований и фундаментов резервуаров являются:

    — грунты с модулем деформации Е < 10 МПа;

    — просадочные и набухающие;

    — вечномерзлые грунты с льдистостью < 0,40;

    — районы с сейсмичностью 7 баллов и более;

    — грунты с отклонением слоев от горизонтали более 7 градусов.

    3.5 Весьма неблагоприятными для устройства оснований и фундаментов резервуаров являются:

    — грунты плывунного типа;

    — просадочные грунты мощностью более 25 метров;

    — вечномерзлые грунты с льдистостью > 0,40;

    — зоны тектонических разломов;

    — участки распространения оползневых, карстовых, мерзлотных и др. опасных геологических процессов.

    3.6 В благоприятных инженерно-геологических условиях под фундаменты резервуаров делают выработки, согласно п. 8.4 СП 11-105-97. Для резервуаров вместимостью до 5000 м3 включительно число выработок должно быть 3. Для резервуаров вместимостью свыше 5000 м3 — не менее 5, с расположением одной выработки в центре, а остальные — должны быть равномерно распределены по периметру основания на расстоянии не более 2 м от предполагаемого положения стенки резервуара. Скважины проходятся на глубину не менее 0,5 диаметра резервуара, а в центре — не менее 0,75 диаметра, но не менее 30 м.

    Для резервуаров вместимостью более 5000 м3 необходимо выполнять полевые испытания грунтов — штамп.

    3.7 При производстве инженерно-геологических изысканий в неблагоприятных условиях в районах развития опасных геологических и инженерно-геологических процессов (склоновых процессов, карста, переработки берегов водных объектов), а также в районах развития специфических грунтов (просадочных, набухающих, засоленных, многолетнемерзлых и др.) состав, объемы, методы и технология работ устанавливаются в соответствии с СП 11-105-97 (части II, III и IV).

    3.8 На основании полных инженерно-гидрогеологических изысканий принимаются варианты решений по водопонижению грунтовых вод с устройством различных типов дренажей.

    Следует использовать вертикальный дренаж, компактный и маневренный.

    На застроенных территориях, сложенных глинистыми грунтами, для снижения уровня подземных вод надлежит применять дренажные завесы, которые выполняются в виде ряда пересекающихся вертикальных скважин, заполненных хорошо фильтрующим материалом.

    Применение водопонижения, особенно в глинистых грунтах и пылеватых песчаных, влечет за собой уплотнение и осадку осушаемой толщи грунтов. Это явление следует учитывать при проектировании дренажа.

    3.9 Расчет несущей способности основания резервуара следует выполнять в случаях и по методике, предусмотренных СНиП 2.02.01-83* "Основания зданий и сооружений. При этом рассчитывается общая устойчивость основания резервуара и местная устойчивость грунта под подошвой кольцевого фундамента. При назначении расчетных характеристик сопротивления грунтов сдвигу следует учитывать быстрое увеличение нагрузок на основание при заполнении резервуаров. Расчеты основания необходимо выполнять на характеристики сопротивления грунтов сдвигу в состоянии незавершенной консолидации. Местная устойчивость грунта под подошвой кольцевого фундамента резервуара, а также прочность конструкции кольцевого фундамента рассчитывается на монтажные и эксплуатационные нагрузки.

    3.10 Основным критерием выбора типа основания и фундамента резервуара является его деформация. Поверочный расчет основания по деформациям производится из условия недопущения превышения деформации основания предельных величин, установленных СНиП 2.09.03-85. Предельные деформации основания резервуара устанавливаются технологическими и конструктивными требованиями сооружения по следующим видам: максимальная абсолютная осадка; относительная осадка основания под днищем, равная отношению разности осадок двух смежных точек и расстоянию между ними; разность осадок под центральной частью днища и под стенкой; крен фундамента. Предельные и расчетные величины деформаций указываются в проекте для полного срока эксплуатации и периода гидроиспытаний резервуара.

    (Измененная редакция, Изм. 2005 г.)

    3.11 При благоприятных грунтовых условиях, фундамент резервуара представляет собой уплотненную подушку из среднезернистого песка с кольцевым железобетонным фундаментом под стенку.

    Минимальная толщина подушки принимается по СНиП 2.02.01-83, а также из условия расположения в теле фундамента анодных заземлителей. Подстилающий слой под подушку должен быть горизонтальным с допуском на планировочные работы. Частичное опирание подушки на насыпные грунты не допускается. Работы по устройству подушки производить в соответствии со СНиП 3.02.01-87, не допуская разуплотнения поверхностного слоя при замачивании и промораживании.

    Минимальный диаметр песчаной подушки должен превышать диаметр стенки резервуара не менее чем на 3 м, а величина откоса песчаной подушки должна быть не менее 1:1,5.

    Деформационные швы в кольцевом железобетоном фундаменте устраиваются в соответствии со СНиП 2.03.01-84*, бетонные работы производятся согласно СНиП 3.03.01-87.

    Поверх подушки и фундамента устраивается гидрофобный слой для защиты днища резервуара от коррозии. Толщина гидрофобного слоя на поверхности подушки не менее 50 мм, на поверхности кольцевого фундамента — не более 20 мм.

    3.12 При благоприятных грунтовых условиях, для резервуаров объемом по строительному номиналу менее 2000 м3 допускается основание резервуара выполнять на песчаной подушке без кольцевого железобетонного фундамента. Отсыпку подушки производить слоями 15-20 см с тщательным уплотнением при лабораторном контроле до достижения объемного веса скелета грунта 1,65 т/м3. До начала отсыпки необходимо произвести опытное уплотнение грунта.

    3.13 При неблагоприятных грунтовых условиях применяются следующие мероприятия по защите основания и фундаментов от недопустимых осадок:

    — замена слоя слабого, просадочного, набухающего грунта менее сжимаемым грунтом;>

    — устройство свайных фундаментов-стоек (в т.ч. грунтовых) с ростверком (железобетонным, щебеночным и т.д.), причем опирание свай-стоек допускается согласно п. 8.4 СНиП 2.02.03-85*;

    — искусственное закрепление грунтов;

    — в условиях вечной мерзлоты рекомендуется применение I принципа использования ВМГ (с сохранением мерзлоты), однако при соответствующем технико-экономическом обосновании возможно применение и II принципа (без сохранения мерзлоты).

    Необходимость анкерного крепления резервуара к фундаменту в районе сейсмичностью более 6 баллов определяется расчетом с учетом технических решений, принятых в Типовых проектах резервуаров вертикальных стальных для нефти строительным номиналом 1000-50000 м3, утвержденных ОАО "АК "Транснефть". Фундамент рассчитывается согласно пособию к СНиП 2.02.01-83*.

    (Измененная редакция, Изм. 2007 г.)

    Если площадка строительства сложена толщей слабых водонасыщенных грунтов мощностью до 10 м и не имеет прослоек торфа, наиболее экономично применение свайного фундамента с промежуточной подушкой. Поверх оголовников устраивается щебеночная подушка высотой не менее расстояния между сваями.

    Когда площадка строительства резервуара сложена значительной толщей слабых грунтов и применение свайного фундамента является неэкономичным, следует выполнять уплотнение грунтов временной нагрузкой с устройством вертикальных дрен для уменьшения продолжительности консолидации грунтов.

    3.14 Строительство резервуаров при весьма неблагоприятных грунтовых условиях не рекомендуется.

    3.15 Для наблюдения за осадкой резервуара в процессе эксплуатации на фундаментах должны предусматриваться геодезические марки, а на расстоянии не менее двух диаметров резервуара, в местах, где отсутствует влияние других сооружений, предусматриваются базовые репера. При необходимости в непосредственной близости от резервуаров предусматриваются рядовые репера. Наблюдение за осадкой и состоянием фундаментов резервуаров проводится в соответствии с требованиями РД 153-39.4-078-01 и должно быть включено в мероприятия по проведению планово-предупредительных ремонтов эксплуатирующей организацией.

    3.16 Для защиты фундаментов от атмосферных осадков вокруг резервуаров выполняется бетонная отмостка из бетона марки не менее В15 шириной 1 м, которая должна отвечать следующим требованиям:

    — срок службы не менее 10 лет;

    — легкость демонтажа и восстановления;

    — устойчивость под воздействием дождевых и капельных вод, падающих с крыши резервуара;

    — морозостойкость согласно СНиП 2.03.01-84*.

    Отвод атмосферных вод из каре резервуаров предусматривается в систему производственно-дождевой канализации.

    Источник

    10. Основания и фундаменты

    10.1.1. Проектирование основания и фундаментов под резервуар должно выполняться специализированной проектной организацией с учетом положений ГОСТ Р 52910-2008, СНиП 2.02.01-83*, СНиП 2.02.03-85; СНиП 2.02.04-88; СНиП II-7-87 и дополнительных требований настоящего Стандарта.

    10.1.2. Материалы инженерно-геологических и гидрологических изысканий площадки строительства должны содержать следующие сведения о грунтах и грунтовых водах:

    — литологические колонки под пятно резервуара, количество, глубина и расположение которых должны обеспечить построение достоверных разрезов вдоль контурной окружности основания и по ее диаметрам;

    — физико-механические характеристики грунтов, представленных в литологических колонках (удельный вес γ, угол внутреннего трения φ, сцепление С, модуль деформации Е, коэффициент пористости ε);

    — расчетный уровень грунтовых вод с прогнозом гидрологического режима на ближайшие 20 лет для резервуаров объемом до 10000 м 3 и на 50 лет для резервуаров объемом более 10000 м 3 .

    Кроме того, если сжимаемая толща представлена слабыми грунтами (модуль деформации менее 10 МПа), то для каждой грунтовой разности должны быть приведены значения коэффициента фильтрации.

    Для величин физико-механических характеристик грунтов должны приводиться однозначные расчетные значения.

    При проектировании фундаментов резервуаров в сложных инженерно-геологических условиях инженерные изыскания должны выполняться специализированными организациями и содержать данные для выбора типа оснований и фундаментов с учетом возможного изменения (в процессе строительства и эксплуатации) инженерно-геологических и гидрологических условий площадки строительства.

    10.1.3. Расчет основания по деформациям предусматривает определение расчетных значений величин, характеризующих абсолютные и относительные перемещения фундаментных конструкций и элементов стальной оболочки резервуара с целью их ограничения, обеспечивающего нормальную эксплуатацию резервуара и его долговечность.

    10.1.4. Расчет осадок основания резервуара следует выполнять, как правило, с использованием расчетной схемы основания в виде линейно-деформируемой среды: полупространства с условным ограничением глубины сжимаемой толщи или слоя конечной толщины.

    В случае, если расчетные значения деформаций основания превышают предельные значения, следует выполнить расчет осадок с учетом совместной работы оболочки резервуара и основания, рассматривая расчетную схему основания, характеризуемую коэффициентами жесткости, в качестве которых принимаются отношения давления на основание к его расчетным осадкам в различных точках поверхности согласно рекомендациям СНиП 2.01.09.

    Расчет системы «резервуар-основание» может быть выполнен также с использованием существующих вычислительных комплексов по определению осадок фундаментов с учетом взаимодействия основания и оболочки резервуара.

    10.1.5. Проектная высота расположения днища резервуара определяется технологическим заданием, однако, эта высота должна превышать максимальный уровень окружающей спланированной поверхности земли минимум на 0.5 м, а после достижения основанием расчетных осадок высота днища над уровнем окружающей земли должна быть не менее 0,15 м.

    10.1.6. В проекте КМ должно быть представлено задание для проектирования основания и фундаментов под резервуар, включающее расчетные реактивные усилия (нагрузки), передаваемые от корпуса резервуара на его фундамент, а также величины допустимых деформаций основания.

    10.2. Расчет нагрузок на основание и фундамент резервуара

    10.2.1. Реактивные усилия, передаваемые с корпуса на основание и фундамент резервуара, определяются в зависимости от конструктивных, технологических, климатических, сейсмических нагрузок и их сочетаний, приведенных в таблице П.4.6 Приложения П.4.

    10.2.2. В состав нагрузок, передаваемых по контуру стенки резервуара на его фундамент, входят нагрузки двух типов.

    Нагрузки первого типа, обеспечивающие осесимметричное распределение усилий по контуру стенки, включают:

    — вес резервуара с учетом оборудования и теплоизоляции, за вычетом центральной части днища;

    — избыточное давление и разрежение в газовом пространстве резервуара.

    Нагрузка второго типа возникает от ветрового воздействия на корпус резервуара и создает кососимметричное распределение усилий по контуру стенки.

    Ветровая нагрузка вызывает появление опрокидывающего момента, вычисляемого относительно точки, расположенной на оси симметрии опорного контура стенки с подветренной стороны резервуара. Нагрузки первого типа создают момент, препятствующий опрокидыванию резервуара.

    10.2.3. Перечень необходимых расчетов включает:

    — определение нагрузок на центральную часть днища в условиях эксплуатации, гидро- пневмоиспытаний и при сейсмическом воздействии;

    — расчет максимальных и минимальных нагрузок по контуру стенки в условиях эксплуатации и при сейсмическом воздействии;

    — проверку на отрыв окраек днища от фундамента при действии внутреннего избыточного давления на пустой резервуар;

    — проверку на опрокидывание пустого резервуара путем сравнения опрокидывающего момента и момента от удерживающих сил;

    — проверку резервуара с продуктом на опрокидывание в условиях землетрясения;

    — расчет анкеров, если происходит отрыв окраек днища от фундамента при действии внутреннего давления на пустой резервуар;

    — расчет анкеров, если устойчивость пустого резервуара от опрокидывания не обеспечена;

    — расчет анкеров, если устойчивость резервуара с продуктом от опрокидывания при землетрясении не обеспечена.

    Расчет нагрузок на основание и фундамент резервуара при землетрясении приведен в п. 9.6.6.

    10.2.4. Опрокидывающий момент, действующий на резервуар в результате ветрового воздействия, вычисляется по формуле:

    10.2.5. Расчетная погонная нагрузка по контуру стенки характеризуется максимальным и минимальным значениями, соответствующими диаметрально противоположным участкам фундамента (рис. 10.1). Максимальная и минимальная нагрузки определяются соответственно, как сумма и разность максимальных нагрузок первого и второго типа (с учетом знаков). Расчетная нагрузка по контуру стенки в основании резервуара определяется по формулам:

    Рис. 10.1. Нагрузки на фундамент, передаваемые по контуру стенки резервуара

    Рис. 10.1. Нагрузки на фундамент, передаваемые по контуру стенки резервуара

    10.2.6. Расчетная вертикальная нагрузка на фундамент резервуара, соответствующая 1-му расчетному сочетанию нагрузок (таблица П. 4.6 Приложения П.4), составляет:

    10.2.7. Если теплоизоляция, или вакуум, или снеговая нагрузка отсутствуют, формула 10.2.6 должна быть приведена в соответствие с полученным сочетанием нагрузок.

    10.2.8. Коэффициент fs назначается согласно указаниям п. 9.2.3.1.7.

    10.2.9. Нагрузки на центральную часть днища определяются исходя из величины внутреннего избыточного давления, максимального проектного уровня налива и плотности продукта (эксплуатация) или воды (гидро- пневмоиспытания). Эту нагрузку следует определять по формулам:

    10.2.10. Требования по установке анкеров

    10.2.10.1. Анкеровка корпуса резервуара требуется если:

    — происходит отрыв окраек днища от фундамента при действии внутреннего избыточного давления;

    — момент от сил, вызванных ветровым воздействием, превышает момент от вертикальных удерживающих сил, действующих на пустой резервуар.

    10.2.10.2. В случаях, указанных в п. 10.2.10.1, стенка резервуара прикрепляется к фундаменту анкерными устройствами, шаг установки и размеры которых определяются расчетом.

    10.2.10.3. Требуется установка анкеров, если выполняются следующие неравенства, соответствующие условиям п. 10.2.10.1:

    Левая часть второго неравенства представляет момент от удерживающих сил, а правая — опрокидывающий момент, определяемый по формуле п. 10.2.4.

    10.2.10.4. Подъемная сила от действия ветра на крышу определяется по формуле:

    Для конических крыш с углом наклона αr ≥ 5° и сферических крыш высотой fr ≥ 0,1D, а также для резервуаров с плавающими крышами следует принять Fwvr = 0.

    10.2.10.5. Расчетная минимальная вертикальная нагрузка на фундамент резервуара вычисляется для 3-го расчетного сочетания нагрузок (таблица П. 4.6 Приложения П.4) и составляет:

    Qmin = γn[(Gs + Gr) + 0,95(Gs0 + Gr0 + Gst + Grt) — 1,2·0,95р π r2].

    10.2.10.6. Если теплоизоляция или избыточное давление отсутствуют, формула 10.2.10.5 должна быть приведена в соответствие с полученным сочетанием нагрузок.

    10.2.10.7. Расчетное усилие в одном анкерном болте определяется по формуле:

    10.3. Конструктивные решения фундаментов

    10.3.1. Устройство фундаментов под резервуары рекомендуется выполнять с применением следующих конструктивных решений:

    — грунтовая подушка (рис. 10.2);

    — кольцевой железобетонный фундамент (рис. 10.3);

    — сплошная железобетонная плита (рис. 10.4).

    10.3.2. Для устройства грунтовой подушки используются чистые и прочные сыпучие материалы — песок и щебень.

    Рис. 10.2. Грунтовая подушка

    Рис. 10.2. Грунтовая подушка

    Формирование подушки осуществляется слоями толщиной около 150 мм с утрамбовкой слоев катками массой от 5 до 10 тонн. Высота подушки должна составлять не менее 0,5 м.

    По верху подушки устраивается гидрофобный слой из битумно-песчаной смеси толщиной не менее 50 мм, состоящей из формованной в горячем состоянии смеси следующих компонентов: 9 % битума, растворенного в чистом керосине, 10 % портландцемента и 81 % чистого песка.

    Дренаж грунтовой подушки и контроль протечек через возможные повреждения днища обеспечивается путем установки по периметру фундамента на расстоянии не более 5 м друг от друга радиальных дренажных трубок диаметром 75 мм, закрытых с торцов пластиковой сеткой 10 × 10 мм.

    Рис. 10.3. Кольцевой железобетонный фундамент

    Рис. 10.3. Кольцевой железобетонный фундамент

    10.3.3. Кольцевой железобетонный фундамент используется при наличии значительных контурных нагрузок по периметру стенки или при необходимости установки анкеров.

    Ширина кольцевого фундамента должна быть не менее 0,8 м для резервуаров объемом до 3000 м 3 и не менее 1,0 для резервуаров объемом свыше 3000 м 3 . Толщина железобетонного кольца принимается не менее 0,3 м. При строительстве резервуаров в сейсмических районах наличие кольцевого железобетонного фундамента является обязательным. Ширина кольца должна быть не менее 1.5 м, а толщина не менее 0,4 м.

    Рис. 10.4. Сплошная железобетонная плита

    Рис. 10.4. Сплошная железобетонная плита

    Рис. 10.4. Сплошная железобетонная плита

    10.3.4. Фундамент в виде сплошной железобетонной плиты рекомендуется для резервуаров диаметром не более 15 м на немерзлых грунтах, для всех резервуаров на мерзлых грунтах, а также для всех резервуаров при хранении в них этилированных бензинов, реактивного топлива или иных ядовитых продуктов. Для обнаружения возможных протечек продукта железобетонная плита должна иметь уклон не менее 1 % от центра к периметру, а также радиально расположенные дренажные канавки.

    Источник

Related Post

Форма заказа АСК 6 диаметр 6 ммФорма заказа АСК 6 диаметр 6 мм

Фундамент стеклопластиковый фспп 210 2 6п Поделитесь с друзьями: Положите товар в корзину и нажмите кнопку «Оформить заказ» Заполните форму оформления заказа и выберите оплату онлайн Оплатите заказ Готово! Превосходные

Видео заливка бутового фундаментаВидео заливка бутового фундамента

Бутовый или бутобетонный фундамент: что это и как заливать Надежный и долговечный фундамент необходим любой постройке. Помимо прочностных качеств к основанию здания могут выдвигаться и многие другие требования. Среди многообразия

Отделка цоколя другими стройматериаламиОтделка цоколя другими стройматериалами

Лучшие материалы для отделки цоколя Цоколь — это часть фундамента, которая приподнята над землёй и опоясывает нижнюю часть здания. Защищает от влаги, промерзания, загрязнения, появления плесени и заселения насекомых. Чтобы

Adblock
detector