Комбинированное свайно ростверковое основание с монолитной плитой

Сферы применения и этапы работ по возведению свайно-плитного фундамента

Устройство свайно-плитного фундамента совмещает преимущества обоих типов силовой конструкции.

Эта инновационная технология подходит для строительства тяжеловесных и многоэтажных сооружений на неравномерных и неизученных грунтах, а также в условиях сейсмически опасных территорий.

Содержание

Устройство конструкции

Конструктивно фундамент состоит из двух несущих частей:

  1. Монолитной плиты.
  2. Свайного поля.

Верхняя часть силовой конструкции покрывает отдельно стоящие опоры. Нагрузка проектного сооружения распределяется через элементы фундамента на грунт таким образом:

  • 80–85% веса принимает свайное поле;
  • 15–20% – железобетонная плита.

В зависимости от исходных условий выбирают различные типы свай:

  • винтовые;
  • буронабивные;
  • забивные.

Комбинированное свайно-ростверковое основание с монолитной плитой

Свайно-плитный фундамент с ростверком – разновидность предыдущего типа опорной конструкции.

Основные элементы:

  1. Опоры, заглубленные в почву.
  2. Ростверк, объединяющий оголовки свай.
  3. Монолитная плита, связывающая все элементы системы в единую опорную конструкцию.

Ростверк в данной системе отвечает за равномерное распределение нагрузок и связку верхней и нижней частей основания.

Устройство обоих типов фундамента практически одинаковое. Различие между конструкциями заключается в том, что свайно-плитный фундамент полностью опирается на грунт, а наличие ростверка не допускает контакт монолита с почвой. В последнем случае основание защищено от опрокидывающих сил, которые возникают в результате сезонного промерзания почвы.

Когда и какой лучше выбрать?

Плиту на сваях выбирают для строительства многоэтажных домов и промышленных объектов, когда важна жесткость и надежность силовой конструкции на неустойчивых почвах. Такое сооружение будет отличаться устойчивость по отношению к вертикальным и горизонтальным нагрузкам, возникающих в грунте.

Сфера применения свайно-ростверкового основания с плитой шире. Конструктивные особенности системы позволяют использовать фундамент в таких случаях:

  • сооружение имеет много тяжелых перекрытий и перегородок, что обуславливает потребность в равномерном распределении веса на основание;
  • здание опирается на просадочные и переувлажненные грунты;
  • на участке подземные источники близко расположены к поверхности;
  • строительство ведется в зоне повышенной сейсмической активности.

Особенности проектирования фундамента при тяжелых геологических свойствах участка описаны в СП 24.13330.2011.

Подготовка и проектирование

Перед проектированием анализируют характеристики участка, а именно:

  • тип и физико-механические свойства почвы;
  • степень пучения земельных масс;
  • глубину сезонного промерзания грунта;
  • риски подтопления, оползней и т.д.

Проводят расчеты проектных нагрузок, в том числе в процессе эксплуатации сооружения. На основе полученных данных:

Проектирование предполагает составление чертежа. Графический документ содержит сведения:

  • габариты возводимой конструкции;
  • сечения всех силовых элементов;
  • размеры опор, плиты, ростверка, отмостки, уступов;
  • места расположения свай с учетом шага;
  • элементы гидроизоляции и теплоизоляции;
  • особенности армирования;
  • линии инженерных коммуникаций и не только.

К графическому документу прилагают:

  1. Спецификации всех конструктивных элементов.
  2. План установки.
  3. Таблицу допустимых нагрузок.
  4. Примечания относительно особенностей основания.

Чертежи свайно-плитных фундаментов:

Технологии строительства

Перед началом возведения основания рекомендуется ознакомиться с нормативными требованиями, изложенными в соответствующей документации:

При строительстве представленного типа фундамента применяют несколько технологий:

  1. Для плитного основания.
  2. Для опорных свай.
  3. Для свайно-ростверковой силовой конструкции.

Разметка участка и обустройство котлована

По осям свайного поля делают разметку:

  • вставляют в грунт обноски на расстоянии 1,5 м от углов конструкции;
  • натягивают шнуры;
  • размечают контур известковым раствором.

Принципы устройства котлована:

  1. Технология с ростверком не предусматривает выемку грунта под монолитную часть фундамента.
  2. Для заглубленной плиты роют котлован на глубину промерзания почвы (2–2,5 м).
  3. Для наземной и мелкозаглубленной плиты – 0,5 – 1,0 м соответственно, подготавливая место для песчано-щебневой подушки.

Монтаж свай

Технология устройства свайного поля зависит от выбранного типа опор. Для свайно-плитного фундамента могут быть использованы такие типы свай:

  • железобетонные забивные;
  • буронабивные армированные;
  • винтовые (металлические или железобетонные).

Этапы монтажа железобетонных забивных свай:

  1. Делают небольшие углубления в местах устройства силовых элементов.
  2. Забивают сваи с помощью специальной техники.
  3. Выравнивают опоры на одной высоте.
  4. Разбивают бетон в верхней части столба, оставляют выпуск из армированных прутьев для последующей связки с верхним элементом фундамента.

Монтаж винтовых свай:

  1. Перед ввинчиванием свай их поверхность покрывают гидроизолирующим составом).
  2. Вкручивают сваи на определенную глубину с помощью спецтехники (как правило, опоры имеют больше габариты и качественно вкрутить элементы ручным способом невозможно).
  3. Выравнивают сваи на одном уровне по горизонтали (металлическим трубам обрезают верхнюю часть с технологическим отверстием, железобетонным – разбивают бетон для получения доступа к прутьям).
  4. Металлические трубы заполняют бетонным раствором, который послужит защитой для металла от окисления.

Последовательность устройства буронабивных свай:

Сваи устраивают в грунте на глубине залегания твердых пород так, чтобы силовая конструкция опиралась на устойчивый несущий пласт.

Технология монтажа свай для свайно-плитного фундамента — в видео:

Изготовление ростверка

В отличие от плиты, ростверк должен находиться на определенном уровне от земли, чтобы силы морозного пучение «не оторвали» его от свай.

Для строительства тяжеловесных конструкции целесообразно использовать железобетонный или металлический ростверки, которые выгодно отличаются повышенной прочностью и долгим сроком службы.

Этапы строительства железобетонного ростверка:

  • устройство опалубки;
  • укладка гидроизоляционного слоя;
  • армирование;
  • заливка раствором.

Особенности ж/б ростверка для различных типов свай обусловлены необходимостью жесткой связки:

  1. Винтовые металлические стержни: оголовки заглубляются в тело ростверка минимум на 5–10 см.
  2. Железобетонные столбы: связывают армирующий каркас ленты с выпуском прутьев из нижних силовых элементов.

Монтаж металлического ростверка:

  • на оголовки свай приваривают обвязку из швеллера или двутавровой балки, располагая металлический элемент «на ребро»;
  • на нижние полки металлической обвязки укладывают слой профнастила.

При монтаже ростверка со съемной опалубкой можно устанавливать швеллер «плашмя», при этом приваривает его к оголовкам не обязательно. В этом случае ростверк изготавливают из дерева, а после застывания бетона его демонтируют.

Как устроена плита?

Технологические этапы строительства верхней монолитной части фундамента:

В зависимости от вида нижней части свайно-плитного фундамента связка арматурного каркаса плиты может быть выполнена с арматурой ростверка или свободными прутьями железобетонных опор.

Особенности устройства монолитной фундаментной бетонной плиты на винтовых сваях:

  • к оголовкам труб приваривается швеллер в качестве обвязки, выдерживая один горизонтальный уровень;
  • сварные швы зачищаются и покрываются слоем лакокрасочного материала;
  • сверху приваривается каркас из металлического проката, создавая опорную плоскость для листов профнастила;
  • строится опалубка под плиту (щели между горизонтальной и вертикальными плоскостями заделываются монтажной пеной);
  • укладывается арматурный каркас;
  • внутренняя часть опалубки заливается раствором;
  • после застывания бетона плита обмазывается гидроизоляционным составом.

Варианты обеспечения демпферного пространства под плитой для фундамента с ростверком:

  1. Монтаж несъемной опалубки из пенопласта вместо подбетонки. При вспучивании материал сжимается, не оказывая давления на силовые элементы конструкции.
  2. Монтаж щитовой опалубки – вариант для висячего ростверка (1–1,5 м над землей), чтобы можно было убрать опалубки после затвердевания бетона.

Устройство плиты на сваях для свайно-плитного фундамента — в видео:

Стоимость погонного метра

Цена строительства складывается из множества факторов, поэтому предварительно обозначить стоимость не решится ни один застройщик. Ориентироваться можно на усредненную стоимость погонного метра плитного фундамента, добавленную к показателю для свайного и ростверкового основания:

Тип основания Стоимость, руб./м3
Плита на винтовых сваях 12000
Плита на буронабивных сваях 13800
Плита на забивных ж/б сваях 15870
Плита на свайно-ростверковом фундаменте (с ж/б летной) 17800
Плита на свайно-ростверковом фундаменте (с обвязкой швеллером) 16800

Частые ошибки и советы, как их избежать

Монтаж плитно-свайного основания представляет собой сложный и трудоемкий процесс, который обычно доверяют профессиональным строителям. При этом заказчику необходимо проконтролировать, чтобы работники не допускали типичных ошибок:

Для уменьшения теплопотерь эксперты советуют между землей и песчаной подушкой укладывать слой глины, а непосредственно под плиту – листовой пеноплекс.

Как правило, бетон подают одновременно через специальные желоба, не допуская ударов. Затем раствор подвергают вибрации для удаления воздуха и максимального уплотнения.

Все, что необходимо знать об устройстве и возведении свайного фундамента, найдете здесь.

Заключение

Комбинированные типы фундамента, обладающие достоинствами свайных и плитных оснований, отличаются повышенной прочностью и долговечностью. Ввиду значительных материальных и трудовых затрат, а также сложности проектных расчетов, свайно-плитное основание применяется только в тех случаях, где другие силовые конструкции не справятся в сложных геологических условиях участка.

Источник

Расчет и проектирование свайно-плитного фундамента с применением грунтоцементных свай

В свайно-плитном фундаменте часть нагрузки воспринимает плита, опирающаяся на грунт, а другую часть нагрузки воспринимают сваи, передающие нагрузку на нижележащие слои грунта.

Одной из технологией, позволяющей выполнять устройство свай, является технология струйной цементации грунтов.

Сущность технологии заключается в перемешивании грунтов струей цементного раствора. В результате в грунтовом массиве формируются сваи из нового материала – грунтоцемента, обладающего высокими деформационными характеристиками.

В отличие от буронабивных свай технология позволяет устраивать сваи в обводненных грунтах без использования обсадных труб.

Другим преимуществом является возможность выполнения работ в стесненных условиях городских строительных площадок.

Кроме того, технология позволяет выполнять комбинированные сваи, когда верхняя часть состоит из железобетонной сваи, а нижняя – из грунтоцементной сваи.

Фото 1. Реконструкция здания в Москве.

Существующие методики расчета комбинированных свайно-плитных фундаментов предусматривают применение железобетонных свай, обладающих жесткостью на много превышающую жесткость грунтового основания. В отличие от железобетонных свай грунтоцементные сваи обладают более низкой жесткостью, что предполагает рассматривать грунтоцементную сваю, как колонну, сформированную из укрепленного (сцементированного) грунта.

Жесткость подобной сваи сравнима с жесткостью грунтового основания, поэтому для расчета таких свай может быть применен иной подход – определение осадки фундаментной плиты на укрепленном основании.

В настоящей работе приводится сопоставление методики расчета свайно-плитного фундамента с применением нормативных российских методик, а также методики, основанной, на укреплении грунта грунтоцементными колоннами.

Статья содержит ряд примеров применения грунтоцементных свай при устройстве свайно-плитных фундаментов.

2. Устройство свайно-плитного фундамента при реконструкции здания.

При реконструкции зданий для сохранения исторически-архитектурного облика города очень часто применяют следующее решение. Внутренняя часть здания демонтируется и оставляется только один фасад, поддерживаемый металлическим каркасом из двутавров. Такое решение применено при реконструкции одного из исторических зданий в городе Москва (фото 1). Проектом предусмотрено возведение 7-и этажного здания с 2-х этажной подземной автостоянкой.

В процессе разработки грунта котлована были зафиксированы осадки фасадной стены здания. По результатам дополнительных геологических изысканий обнаружены рыхлые пески средней крупности с модулем деформации 12-18 МПа. Ниже песков залегают глины тугопластичной и полутвердой консистенции с модуль деформации – 18-26 МПа.

Заказчиком было принято решение об устройстве свайно-плитного фундамента. Рассматривался вариант применения буронабивных свай и вариант грунтоцементных свай по технологии струйной цементации грунтов.

Стоит отметить, что на момент принятия решения генподрядчиком уже был выкопан котлован глубиной 4,0 м и установлен первый ярус распорной системы из труб. Это обстоятельство сыграло решающую роль при принятии решения в пользу технологии струйной цементации грунтов, т.к. при производстве работ по устройству грунтоцементных свай может быть применена буровая установка с короткой мачтой, позволяющей выполнять работы под распорными трубами.

Неравномерная нагрузка от здания на грунтовый массив составляет 18-44 тс/м2. Расчет осадки фундаментной плиты проводился в программе GeoSet.

Сущность методики, заложенной в программе GeoSet, заключается в следующем. В программе задаются жесткость каждой сваи и грунтов в основании плиты, которые можно вычислить по нормативным методикам. Из решения системы уравнений находится осадка свайно-плитного фундамента.

Преимущество программы в том, что она позволяет рассчитывать осадку свайно-плитного фундамента с неравномерной сеткой расположения свай, а также вычислять усилия в каждой свае.

Результаты расчета показали, что максимальная осадка фундаментной плиты на естественном основании (без свай) составила 17,6 см, минимальная осадка – 6,2 см, относительная разность осадок – 0,0033. Неравномерная осадка здания обусловлена дополнительной нагрузкой от сохраняемого фасада здания.

Как было указано выше, для снижения крена и максимальных осадок здания было принято решение об устройстве дополнительных грунтоцементных свай под фундаментной плитой.

Читайте также:  Армирование монолитного фундамента

В нагруженной части здания, примыкающей к сохраняемому фасаду, сваи устраивали с шагом 3,0 м, в менее нагруженной – с шагом 2,0 м(рис.1). Длина свай принята равной 10,2 м.

Диаметр грунтоцементных свай, выполняемых по однокомпонентной технологии Jet1, в песчаных грунтах принят равным 750 мм, в глинистых – 600 мм. Модуль деформации грунтоцементных свай в песчаных грунтах принят равным 3000 МПа, в глинистых грунтах – 1000 МПа.

По результатам расчетов в программе GeoSet максимальная осадка здания составляет 5,7 см, минимальная осадка – 3,2 см, относительная разность осадок – 0,0007 (рис. 2).

План свайного поля

Рис.1. План свайного поля.

Рис. 2. Результаты расчета осадки здания и нагрузки на сваи в программе GeoSet.

Общая нагрузка распределилась следующим образом: 57% приходится на сваи, 43% — на фундаментную плиту.

Кроме того, расчет осадки здания выполнялся по методике, сущность которой заключается в том, что грунтоцементные сваи и грунт рассматриваются как грунтовый массив с
осредненным (эффективным) модулем деформации.

где Ep , Eg – модули деформации свай и грунта;

Sp , S – площади всех свай и общая площадь плиты.

По результатам расчетов максимальная осадка здания составила 6,8 см, минимальная осадка – 1,6 см, относительная разность осадок – 0,0015. Несмотря на то, что в этой методике не учитывается неравномерность расположения свай, результаты расчета по методу осреднения характеристик сопоставимы с результатами расчета свайно-плитного фундамента.

Прогнозируемая величина максимальной осадки свайно-плитного фундамента по результатам расчетов составила 5,7-6,8 см, что в 2 раза ниже предельной максимальной осадки 15,0 см, принятой по нормативным документам, что гарантирует безопасную эксплуатацию здания.

Из-за стесненности площадки оборудование (высоконапорный насос, миксерную станцию для приготовления цементного раствора и силос для цемента) пришлось разместить на борту котлована на площадке размерами 8,0х8,0 м. Работы по устройству грунтоцементных свай выполнялись из котлована глубиной 6,8 м.

Для контроля качества работ выполнены опытные сваи с последующим определением диаметра свай и определением прочности на сжатие выбуренного из свай керна. Диаметр грунтоцементных свай в песчаных грунтах составил 750-900 мм (фото 2). По результатам испытаний прочность грунтоцемента на сжатие составила 5-12 МПа, что превышает проектные характеристики.

Производительность устройства грунтоцементных свай длиной 10,2 м составила 6-8 свай в смену.

Фото 2. Грунтоцементная свая.

2. Проектирование свайно-плитного фундамента из комбинированных свай.

В настоящее время на Аккермановском руднике ведется строительство цементного завода. Первоначально для силоса сырьевой муки по проекту предполагался свайно-плитный фундамент из железобетонных забивных свай 30х30 см длиной 6,0 м.

Количество свай – 300 шт. Размер плиты – 18,8х18,8 м, толщина – 3,0 м. Общая нагрузка от силоса и плиты – 25 139 тс (71 тс/м2).

По предварительным изысканиям геология представляет собой глину, которую подстилает известняк. По проекту сваи должны были опираться на известняк. Но после начала бурения лидерных скважин для погружения свай оказалось, что кровля известняка имеет кратерообразный характер с пиками и впадинами, вследствие чего большая часть свай не доходят до кровли известняка, являющимся несущим слоем. Это может привести к ненормативным осадкам и крену силоса.

С целью снижения осадок до безопасного уровня было предложено в основании железобетонных свай выполнить грунтоцементные сваи по технологии струйной цементации грунтов (рис. 3).

Рис. 3. Разрез свайно-плитного фундамента. 1 – глина, 2 – известняк.

Моделирование напряженно-деформированного состояния свайно-плитного фундамента и грунтового массива выполнено с помощью метода конечных элементов в трехмерной постановке.

Дискретизацию расчетной области выполняли треугольными элементами с линейной аппроксимацией перемещений в области элемента. Конечно-элементная модель расчетной области представлена на рисунке 4.

Согласно геологическим изысканиям модуль деформации глины составляет 15 МПа, известняка – 1000 МПа.

Диаметр грунтоцементных свай по технологии Jet1 в глинистых грунтах принят равным 500 мм, модуль деформации грунтоцементных свай – 500 МПа.

Учет свай выполнялось путем задания расчетного слоя с осредненным модулем деформации по правилу механической смеси.

В расчетной модели было задано 4 слоя. Осредненные модули деформации слоев приведены в таблице 1.

Наименование слоя Е, МПа
1 Фундаментная плита 32 500
2 Глина с железобетонными сваями 2 972
3 Глина с грунтоцементными сваями 132
4 Известняк 1 000

Основная сложность заключалась в моделировании рельефа известняка, имеющего кратерообразный характер. В соответствие с проведенными дополнительными инженерно-геологическими данным на расчетную область нанесли точки, соответствующие отметкам кровли известняка, затем эти точки соединили поверхностями.

Выполненные расчеты показали, что максимальная осадка фундаментной плиты составила 1,8 см, что ниже принятого допустимого значения 5,0 см (рис. 5). Величина крена 0,0005 также не превышает допустимое значение 0,0020.

Рис. 4. Фрагмент конечно-элементной модели.

Рис. 5. График распределения осадки в грунтовом массиве, м.

На первом этапе выполняли устройство грунтоцементных свай по технологии струйной цементации грунтов (фото 3).

Скважины бурили до кровли известняка для установления его фактической отметки и на 1,0 м заглублялись в слой известняка. Затем производился подъем монитора до отметки на 1,0 м выше отметки низа железобетонных свай.

В процессе устройства грунтоцементных свай также были выявлены многочисленные прослойки известняка в слое глины, что усложняло бурение скважин.

На втором этапе производили забивку железобетонных свай с погружением их в тело грунтоцементных свай на 500 мм. Забивку свай производили с устройством лидерных скважин диаметром 250 мм.

Для контроля качества из опытных грунтоцементных свай был отобран керн и определены деформационные и прочностные характеристики грунтоцемента. Средняя прочность на сжатие составила – 2,5 МПа, модуль деформации – 543 МПа, модуль упругости – 1082 МПа. Результаты испытаний подтвердили заданные в проекте значения.

Фото 3. Устройство грунтоцементных свай.

3. Устройство свайно-плитного фундамента с применением грунтоцементных свай Jet2

В Нижний Новгороде при строительстве жилого здания также было принято решение о применении свайно-плитного фундамента из грунтоцементных свай. Размер фундаментной плиты – 21,0×43,9 м.

Основание фундамента здания сложены слабыми лессовыми грунтами (супеси, суглинки), склонными к большим просадкам при замачивании под действием давления, передаваемого фундаментной плитой. Физико-механические свойства грунтов представлены в таблице 2.

ИГЭ Тип грунта g, кН/м3 С, кПа j, ° Е, МПа h, м
3 Супесь лессовая твердая, плотная 20,5 15 27 15 16,2
4 Суглинок лессовый 19,7 18 19 11 4,3
5 Глина полутвердая 19,6 83 22 30

С целью снижения осадок до безопасного уровня предложено выполнить устройство грунтоцементных свай в основании фундаментной плиты. Сваи устраиваются по технологии Jet2, диаметр свай в суглинках принят равным 1,5 м.

Расчет осадки свайно-плитного фундамента выполнялся в программе GeoSet.

Оптимальная длина свай, полученная по результатам расчетов, составляет 28,0 м. Сваи устраиваются с шагом 4,3 м, в местах лифтовой шахты запроектировано дополнительно 4 сваи. Общее количество свай – 42 шт.

Модуль деформации грунтоцементных свай в глинистых грунтах – 1000 МПа.

В соответствие со схемой нагружения вычислена равнодействующая сила, равная 54 418 тс (59 тс/м2). Анализ схемы нагружения показал, что эксцентриситет равнодействующей силы составил по х – 0,46 м, по y – 0,04 м.

Средняя жесткость свай, вычисленная в программе, составляет Es = 6209 тс/м, жесткость грунтового основания – C = 59 тс/м2.

По результатам расчетов средняя осадка здания составила 17,0 см (рис. 6), что не превышает допустимую осадку для зданий на плитных фундаментов – 22,5 см.

Относительная разность осадок составила 0,003.

Ниже представлена фотография объекта на этапе откопки грунтоцементных сваи и возведения фундаментной плиты (фото 4).

Рис. 6. Осадка свайно-плитного фундамента.

Фото 4. Свайно-плитный фундамент с грунтоцементными сваями. Устройство фундаментной плиты.

Источник

Фундамент плита на сваях своими руками: пошаговая инструкция

Свайно-плитный фундамент (СПФ) — комбинированный тип основания, которое способно выдерживать повышенный нагрузки длительное время. Такой фундамент состоит из двух несущих конструкций: свайного поля и бетонной плиты. Основное назначение комбинированного СПФ — многоэтажное строительство. Например, 90% зданий комплекса Москва-Сити построены на свайно-плитныхоснованиях. В малоэтажном строительстве такая конструкция используется редко по причине нецелесообразности и высокой стоимости.

Монтаж СПФ при возведении коттеджа или загородного дома оправдан в следующих случаях:

  1. В зонах с повышенной сейсмической активностью.
  2. На пучинистых грунтах, при этом несущие сваи рекомендуется дополнительно усилить перед сооружением монолитной плиты.
  3. В местах, где глубина промерзания грунта ниже 2,5 м.
  4. Пласты грунтовых вод расположены высоко к поверхности земли.
  5. При возведении сооружений чувствительных к вибрациям (из пенобетона, стекла).
  6. Строительство пристройки к существующему зданию на монолитном или ленточном фундаменте.

Часто свайно-плитное основание применяют при отсутствии данных гидрогеологических изысканий участка. Во многих случаях стоимость устройства СПФ оказывается ниже, чем проведение исследований. Для подстраховки будущие владельцы частного дома выбирают этот тип основания, как самого надежного и долговечного.

Фундамент плита на сваях своими руками: пошаговая инструкция

Расчеты комбинированного свайно-плитного фундамента

Расчет СПФ состоит из двух частей:

  1. расчет свайного фундамента;
  2. расчет параметров бетонной плиты.

При расчете свайного фундамента определяется диаметр свай, их количество, расстояние между сваями, глубина залегания. Данный расчет не представляет сложности — его легко провести самостоятельно. Результатом расчетов станет схема, на которой указано расположение свай.

Расчет плитной части более сложный. Он учитывает следующие факторы:

  1. планируемая нагрузка на плитное основание;
  2. глубина промерзания грунта;
  3. наличие дренажной системы;
  4. наличие и толщина подушки между подземными водами и основанием;
  5. неравномерность свайного фундамента;
  6. условия взаимодействия плиты с грунтом и пр.

При наличии определенных знаний для расчета СПФ можно использовать профессиональную программу GeoPlate, которая позволит не только точно определить параметры бетонной плиты, но рассчитает осадку с учетом всех физических и геометрических данных.

Фундамент плита на сваях своими руками: пошаговая инструкция

Точные инженерные расчеты в обязательном порядке проводятся при строительстве многоэтажных сооружений. При возведении частного малоэтажного дома и учета того, что нагрузка на СПФраспределяется следующим образом: 85% — на сваи и 15% — на плиту, а также небольшой массы здания, сложными расчетами плитной части можно пренебречь.

Толщина монолитной плиты зависит от марки бетонной смеси, используемой для ее заливки, площади сооружения и его массы. Для дома 10х10 из тяжелых строительных материалов (кирпич керамический, железобетон) оптимальная толщина плиты будет составлять 30-40 см. Строение такой же площади, но возведенное из легких материалов нуждается в основании толщиной 20-30 см. Для легких конструкций и небольших домиков 6х6 м достаточно плиты толщиной 10 см.

Зная площадь основания и толщину плиты легко вычислить требуемое количество бетонной смеси для устройства СПФ: площадь основания х толщина в метрах = кол-во бетона (м3).

Расчет осадки

Расчет осадки также производится в профессиональных инженерных программах типа PLAXIS. При строительстве дома массой до 12-15 тонн осадка фундамента будет составлять не более 1-3%, поэтому производить сложные расчеты осадки необязательно. Однако если строительство ведется на пучинистых почвах, то расчет лучше произвести и с его учетом продолжать строительство.

Можно ли самостоятельно рассчитать осадку СПФ? При наличии инженерного опыта, специальных знаний и всех исходных данных произвести расчет можно самому, руководствуясь нормативами СП 24.13330.2011. Из всех способов расчета рекомендуется использовать самый простой — метод послойного суммирования с вычислением осадки каждой отдельной сваи. В идеале расчет осадки лучше заказать проектной организации вместе с разработкой проекта дома.

Технология строительства СПФ

Общая технология строительства описана в СП 22.13330. В соответствии с нормативами процесс обустройства свайно-плитного основания включает следующие этапы:

Подготовительные работы

Под этим понятием подразумевается расчистка участка от мусора, выравнивание, выполнение разметки расположения свай по схеме. Также на данном этапе решается вопрос с покупкой или изготовлением бетонной смеси для плиты. Учитывая, что заливку фундаментной плиты лучше производить за один раз, бетон лучше заказать на ближайшем РБУ. Замесить такое количество бетона самостоятельно практически нереально, однако если у вас есть соответствующее оборудование, опыт и несколько помощников, можно изготовить смесь на участке.

Читайте также:  Основные способы усиления фундаментов усиление сваями

Монтаж свай

Сваи монтируются разными способами в зависимости от их типа, глубины залегания, особенностей участка и пр. В сфере частного домостроения самый востребованный вариант — винтовые сваи. Они имеют множество преимуществ: доступная цена, широкий выбор типоразмеров, простота монтажа. Плитный фундамент на винтовых сваях прослужит не менее 20 лет, а при благоприятных условиях до 50 лет.

Монтаж винтовых свай может осуществляться ручным или механическим способом. После того, как сваи погружены в грунт до нужной глубины проводится их выравнивание путем обрезки. Дальше на готовое свайное поле устанавливается плитная часть основания.

Фундамент плита на сваях своими руками: пошаговая инструкция

Устройство плиты на винтовых сваях

Плитная часть СПФ изготавливается в следующем порядке:

  • Торчащие из грунта сваи объединяются с металлическим ростверком. Для устройства ростверкаиспользуются швеллеры и уголки размера 20 или 30. Устанавливаются элементы по периметру и внутри свайного поля по линиям установки свай. Свайное поле засыпается гравийно-песчаннойсмесью, образующей «подушку» для будущей плитной части СПФ.
  • Отливается подбетонка — стяжка из тощего бетона марки В7.5 толщиной 10 см. Назначение подбетонки — выравнивание поверхности для укладки гидроизоляции и утеплителя.
  • Монтаж гидроизоляции. Можно применять как современные гидроизоляционные пленки-мембраны, бикростом, технониколь, так и классику — рубероид, гидроизол.
  • Монтаж теплоизоляции. Монолитная плита основания одновременно будет являться нижним слоем пола в доме, поэтому утепление положить лучше сразу, чтобы сделать пол теплым. В качестве теплоизоляции используются плиты пеноплекса толщиной 10-15 см.
  • По периметру будущего монолитного перекрытия устанавливается опалубка. Высота опалубки должна быть на 10 см выше высоты (толщины) плиты.
  • Внутри выполняется армирование профилем с размером ячейки 30 см. Нижний слой армирующей сетки желательно укладывать на полимерную пароизоляционную подкладку, которая будет покрывать утеплитель. Верхняя часть арматурного каркаса соединяется с выпусками ростверка.

Фундамент плита на сваях своими руками: пошаговая инструкция

Для усиления конструкции по торцам монтируются П-образные металлические элементы из арматуры.

  • Заливка бетоном марки В15 или В20. Чтобы равномерно залить всю бетонную массу в едином направлении необходимо использовать бетононасос. Таким оборудованием всегда оснащены автобетоносмесители, доставляющие бетон. Для выравнивания бетонного слоя используется правило.
  • Утрамбовка производится при помощи виброоборудования.

Заливка монолитного основания на сваях начинается с мест, где расположены наружные свайные опоры. Утрамбовка также должна производиться сначала вокруг свай, а потом по всей площади плиты.

  • Фундамент на винтовых сваях с монолитной плитой окончательно затвердевает через 7-10 дней. В процессе затвердевания рекомендуется соблюдать температурный режим. При сухой погоде и температуре выше +22 необходимо поливать плиту каждые 2-3 часа, чтобы избежать появления трещин. При наличии осадков нужно укрыть СПФ пленкой или соорудить временный навес.

Фундамент плита на сваях своими руками: пошаговая инструкция

Свайно-ростверковый фундамент с монолитной плитой

Назначение ростверка — правильное распределение нагрузки и связка двух типов основания: свайного и плитного посредством объединения свайных оголовков. Для СПФ этого типа лучше использовать не металлический, а железобетонный ростверк. Для устройства ж/б ростверка по оголовкам свай выполняется устройство опалубки, армирование, а потом заливка ростверка бетоном марки В10.

После того как монолитный ростверк наберет прочность (через 7-10 суток) приступают к устройству монолитной плиты. Поэтапное строительство в этом случае аналогично тем процессам, которые выполняются при устройстве фундамента на винтовых сваях с металлическим ростверком: подбетонка, гидроизоляция, утепление, опалубка, армирование, заливка бетонного массива, утрамбовка.

Источник



Комбинированный свайно-плитный фундамент: устройство плиты по сваям

Свайно-плитный фундамент

Согласно своду правил СП 22.13330 на просадочных грунтах самым эффективным является свайно-плитный фундамент либо плитный ростверк по оголовкам буронабивных или винтовых свай. Отличие этих конструкций заключается в полном опирании плиты на грунт для передачи части нагрузок. Ростверк с землей не контактирует, необходим исключительно для обеспечения пространственной жесткости фундамента и опирания мелкоформатных стеновых материалов (кирпич, блоки).

Пошаговая инструкция по устройству

Комбинированный фундамент всегда дороже отдельных оснований, включенных в его конструкцию, поэтому его закладывают в проект в следующих случаях:

  • плитный ростверк необходим, чтобы собрать неравномерно распределенные нагрузки (например, в здании много тяжелых перегородок);
  • заглубленная плита, являющаяся полом по грунту подземного этажа, опирается на просадочные грунты (здание осядет после возведения стен);
  • на оголовки буронабивных/винтовых свай невозможно опереть стены из мелкоформатных материалов (кирпичная, блочная кладка).

Другими словами, в СП 24.13330 рассматривается проектирование плитных ростверков по оголовкам свай для самых тяжелых геологических условий участка, когда даже плавающая плита, обладающая высокой несущей способностью, может уйти под землю после строительства на ней коробки коттеджа.

Расчет и изыскания

В СП 24.13330 указано, что при геологических изысканиях для комбинированных оснований глубина разведочного шурфа/скважины должна быть на 5 – 10 м ниже подошвы сваи при нагрузках до 3 МН, свыше этого значения, соответственно. Если пятно застройки больше 10 х 10 м, глубина разведочных шурфов увеличивается до 15 м от подошвы сваи. Техногенные почвы, рыхлые, органические, насыпные пласты должны быть пройдены насквозь до уровней с достаточной несущей способностью. Достаточность несущей способности пласта выясняется с помощью расчётов.

Плитный ростверк по сваям передает сборные нагрузки здания на пласты с гарантированной несущей способностью. Поэтому сваи не могут погружаться «чуть ниже отметки промерзания», а погружаются именно до несущего пласта, в этом вся суть свай. В упомянутых выше нормативах СП принято обозначение свайно-плитного фундамента, как КСП (комбинация свая-плита). Погрешность в расчетах допускается лишь в сторону увеличения запаса прочности. Допускается постоянный и переменный шаг свайного поля, монолитный и сборный ростверк.

Индивидуальному застройщику необходимо учесть:

  • строение, плита, свайное поле и грунты это единая конструктивная система;
  • расчет изгиба, внутренних усилий, просадок и подвижек производится исключительно в специализированных программах методом подбора минимально возможных параметров (толщина плиты, количество и диаметр арматуры, диаметр сваи, глубина погружения) для сокращения бюджета строительства.

Самостоятельные вычисления в данном случае практически невозможны. На точность расчетов влияют даже такие факторы, как конфигурация стен, конструкция котлована, плотность застройки поселка, очередность сооружения стен, перекрытий, кровли. Поэтому расчет следует доверить специалистам.

Свободным сопряжением ростверка является заделка сваи на 5 – 10 см в монолитную плиту или опирание ж/б конструкций на оголовки. Жестким сопряжением является заделка на длину анкеровки, этот метод используется в случаях:

  • наличия выдергивающих нагрузок;
  • применения составных, наклонных свай;
  • присутствия смещающих горизонтальных нагрузок;
  • на торфяных, текучих глинистых, рыхло-песчаных грунтах.

При жесткой заделке необходим расчет на продавливание, может применяться уширение оголовка.

Разметка и коммуникации

Для комбинированных фундаментов КСП разметку производят по осям свайного поля с учетом габаритов котлована:

  • монтаж обносок – на расстоянии 1 – 2 м от углов котлована, натяжение шнуров по осям стен;
  • оконтуривание периметра – черта для каждой стороны котлована мелом, известковым раствором на грунте.

На этапе выемки грунта возможны варианты:

  • если в проект заложен висячий ростверк, в котловане нет необходимости;
  • для плиты глубокого залегания глубина котлована составляет 2 – 2,5 м в зависимости от отметки промерзания в регионе;
  • для малозаглубленной плиты грунт вынимают на 0,7 – 1 м;
  • если планируется низкий ростверк (наземный, подземный), глубина разработки составляет 0,5 – 0,7 м, соответственно.

Малозаглубленный свайно-плитный фундамент

Малозаглубленный свайно-плитный фундамент.

В трех последних вариантах фундаментная подушка из нерудного материала (щебень при высоком УГВ, песок при низком УГВ) в комплексе с утепленной отмосткой является обязательным условием. В противном случае при вспучивании промерзшего грунта плиту оторвет от свай.

Для малозаглубленных и незаглубленных оснований актуален ввод коммуникаций перед армированием и укладкой бетона в опалубку. В подвальные помещения, для которых выбирается плита глубокого залегания, инженерные системы подводятся через боковые стены, в предварительно заложенные гильзы.

Плита на винтовых сваях

«Висячая» плита на винтовых сваях.

Толщина подстилающего слоя составляет 30 – 80 см по различным нормативам. Индивидуальному застройщику следует ориентироваться на геологические условия в пятне застройки. Например, на пылеватых песках, подрабатываемых грунтах имеет смысл выбрать максимальный слой. На крупных песках в засыпке нет необходимости. Каждый 20 см слой уплотняется виброплитой, независимо от того щебень это или песок.

Для плиты монолитных конструкций необходима подошвенная гидроизоляция, поэтому поверх подстилающего слоя укладывается двухслойный ковер из Технониколя, Бикроста или 0,15 мм полиэтиленовая пленка. Чтобы герметизировать узлы прилегания свай и плиты пленку укладывают после заливки вертикальных столбов.

Изготовление свайного поля

Для позиционирования бурильного инструмента на дне котлована со шнуров, закрепленных на обносках по осям стен, отвесом переносится центр сваи. Ручным инструментом или мотобуром большинства производителей возможно изготовить в земле отверстия максимум 40 см в диаметре. Некоторые фирмы выпускают 50 см оснастку, которая предпочтительнее для буронабивных свай в просадочных грунтах. Технология изготовления буровых свай под плитный ростверк имеет вид:

  • бурение скважин на глубину несущего пласта по проекту;
  • монтаж опалубки – цилиндр из куска рубероида, полиэтиленовая или асбоцементная труба соответствующего диаметра;
  • армирование – каркасы изготавливаются из вертикальных стержней 8 – 14 мм переменного сечения (минимальное количество стержней по нормам равно 4 шт на одну сваю), обвязанных кольцевыми или квадратными хомутами из 6 – 8 мм гладкой арматуры, верхние концы изгибаются под прямым углом, чтобы позже их можно было связать с сеткой плиты, ростверка;
  • бетонирование – рекомендуется бетон подвижности П4, укладываемый в опалубку через воронку, уплотнение смеси глубинным вибратором.

После набора бетоном прочности 50% минимум можно приступать к следующему этапу.

Плита по сваям

Плита по сваям

Изготовление монолитной армированной плиты по оголовкам свай производится по технологии:

  • подбетонка – стяжка 5 – 10 см из тощего бетона без арматуры, служащая для выравнивания и предохранения разрывов гидроизоляционного ковра;
  • гидроизоляция – полиэтиленовая пленка 0,15 мм, мембрана или два слоя Технониколь, Бикрост, гидростеклоизола с нахлестом листов 10 см, герметизацией стыков;
  • опалубка по периметру из щитов, высота которых на 5 – 7 см больше проектной отметки (необходимо для предотвращения расплескивания смеси во время виброуплотнения, выравнивания правилом);
  • армирование – нижняя сетка из арматуры периодического профиля 8 – 14 мм с ячейкой 30 х 30 см максимум, уложенная на прокладки (полимерный материал, бетон) толщиной 1,5 – 4 см, верхняя сетка аналогичной конструкции, установленная на специальные хомуты ( пауки), П-образные элементы по торцам плиты для связки двух сеток;
  • заливка – укладка смеси в одном направлении с выравниванием правилом и уплотнением вибраторами (глубинные, реечные);
  • уход за бетоном – полив в первые семь дней или мокрый компресс из песка, опилок с периодическим увлажнением в жару, укрывание пленкой, теплоизолятором в холод.

Подбетонка изготавливается из бетона В7,5, который гораздо дешевле марки B12,5 – В25, применяемой для самой плиты. Укладка полиэтиленовой пленки поверх щебня гарантирует множественные проколы камнями, подбетонка этот слой защитит от повреждений.

Нижний армопояс можно укладывать на 2 – 3 см прокладки, что позволит снизить толщину плиты до 15 см (обязателен расчет) без нарушений минимально возможного расстояния в свету между поясами армирования 10 см.

Ростверк по сваям

В отличие от монолитной плиты, ростверк не должен иметь опирания на грунт, чтобы силы пучения не оторвали его от свай в момент эксплуатации. Поэтому используется несколько технологий для обеспечения демпферного пространства:

  • несъемная опалубка из пенопласта низкой плотности – материал сжимается почвой при вспучивании, не оказывая давления на бетонный ростверк;
  • съемная щитовая палуба – вариант возможен только для висячего ростверка высотой 1 – 1,2 м от земли для нормальной распалубки после набора прочности бетоном.

В первом случае технология полностью аналогична с бетонированием плиты. Оголовки свай вмуровываются на 5 – 10 см, укладываются две арматурных сетки. Вместо подбетонки используется пенопласт.

В последнем случае ростверк находится гораздо выше поверхности земли, палуба фиксируется в пространстве стойками, на которые опираются балки, прогоны. Это самый затратный вариант монолитного ростверка, использующийся очень редко.

Читайте также:  Арматурная лента для фундамента

Таким образом, рассмотрены все возможные варианты комбинированного фундамента, в конструкцию которого входят сваи и плита (заглубленная или висячая). Ввиду сложного проектирования специалисты рекомендуют поручать расчеты строительным компаниям, обладающим штатом сотрудников с необходимой квалификацией.

Источник

Расчет и проектирование свайно-плитного фундамента с применением грунтоцементных свай

В свайно-плитном фундаменте часть нагрузки воспринимает плита, опирающаяся на грунт, а другую часть нагрузки воспринимают сваи, передающие нагрузку на нижележащие слои грунта.

Одной из технологией, позволяющей выполнять устройство свай, является технология струйной цементации грунтов.

Сущность технологии заключается в перемешивании грунтов струей цементного раствора. В результате в грунтовом массиве формируются сваи из нового материала – грунтоцемента, обладающего высокими деформационными характеристиками.

В отличие от буронабивных свай технология позволяет устраивать сваи в обводненных грунтах без использования обсадных труб.

Другим преимуществом является возможность выполнения работ в стесненных условиях городских строительных площадок.

Кроме того, технология позволяет выполнять комбинированные сваи, когда верхняя часть состоит из железобетонной сваи, а нижняя – из грунтоцементной сваи.

Фото 1. Реконструкция здания в Москве.

Существующие методики расчета комбинированных свайно-плитных фундаментов предусматривают применение железобетонных свай, обладающих жесткостью на много превышающую жесткость грунтового основания. В отличие от железобетонных свай грунтоцементные сваи обладают более низкой жесткостью, что предполагает рассматривать грунтоцементную сваю, как колонну, сформированную из укрепленного (сцементированного) грунта.

Жесткость подобной сваи сравнима с жесткостью грунтового основания, поэтому для расчета таких свай может быть применен иной подход – определение осадки фундаментной плиты на укрепленном основании.

В настоящей работе приводится сопоставление методики расчета свайно-плитного фундамента с применением нормативных российских методик, а также методики, основанной, на укреплении грунта грунтоцементными колоннами.

Статья содержит ряд примеров применения грунтоцементных свай при устройстве свайно-плитных фундаментов.

2. Устройство свайно-плитного фундамента при реконструкции здания.

При реконструкции зданий для сохранения исторически-архитектурного облика города очень часто применяют следующее решение. Внутренняя часть здания демонтируется и оставляется только один фасад, поддерживаемый металлическим каркасом из двутавров. Такое решение применено при реконструкции одного из исторических зданий в городе Москва (фото 1). Проектом предусмотрено возведение 7-и этажного здания с 2-х этажной подземной автостоянкой.

В процессе разработки грунта котлована были зафиксированы осадки фасадной стены здания. По результатам дополнительных геологических изысканий обнаружены рыхлые пески средней крупности с модулем деформации 12-18 МПа. Ниже песков залегают глины тугопластичной и полутвердой консистенции с модуль деформации – 18-26 МПа.

Заказчиком было принято решение об устройстве свайно-плитного фундамента. Рассматривался вариант применения буронабивных свай и вариант грунтоцементных свай по технологии струйной цементации грунтов.

Стоит отметить, что на момент принятия решения генподрядчиком уже был выкопан котлован глубиной 4,0 м и установлен первый ярус распорной системы из труб. Это обстоятельство сыграло решающую роль при принятии решения в пользу технологии струйной цементации грунтов, т.к. при производстве работ по устройству грунтоцементных свай может быть применена буровая установка с короткой мачтой, позволяющей выполнять работы под распорными трубами.

Неравномерная нагрузка от здания на грунтовый массив составляет 18-44 тс/м2. Расчет осадки фундаментной плиты проводился в программе GeoSet.

Сущность методики, заложенной в программе GeoSet, заключается в следующем. В программе задаются жесткость каждой сваи и грунтов в основании плиты, которые можно вычислить по нормативным методикам. Из решения системы уравнений находится осадка свайно-плитного фундамента.

Преимущество программы в том, что она позволяет рассчитывать осадку свайно-плитного фундамента с неравномерной сеткой расположения свай, а также вычислять усилия в каждой свае.

Результаты расчета показали, что максимальная осадка фундаментной плиты на естественном основании (без свай) составила 17,6 см, минимальная осадка – 6,2 см, относительная разность осадок – 0,0033. Неравномерная осадка здания обусловлена дополнительной нагрузкой от сохраняемого фасада здания.

Как было указано выше, для снижения крена и максимальных осадок здания было принято решение об устройстве дополнительных грунтоцементных свай под фундаментной плитой.

В нагруженной части здания, примыкающей к сохраняемому фасаду, сваи устраивали с шагом 3,0 м, в менее нагруженной – с шагом 2,0 м(рис.1). Длина свай принята равной 10,2 м.

Диаметр грунтоцементных свай, выполняемых по однокомпонентной технологии Jet1, в песчаных грунтах принят равным 750 мм, в глинистых – 600 мм. Модуль деформации грунтоцементных свай в песчаных грунтах принят равным 3000 МПа, в глинистых грунтах – 1000 МПа.

По результатам расчетов в программе GeoSet максимальная осадка здания составляет 5,7 см, минимальная осадка – 3,2 см, относительная разность осадок – 0,0007 (рис. 2).

План свайного поля

Рис.1. План свайного поля.

Рис. 2. Результаты расчета осадки здания и нагрузки на сваи в программе GeoSet.

Общая нагрузка распределилась следующим образом: 57% приходится на сваи, 43% — на фундаментную плиту.

Кроме того, расчет осадки здания выполнялся по методике, сущность которой заключается в том, что грунтоцементные сваи и грунт рассматриваются как грунтовый массив с
осредненным (эффективным) модулем деформации.

где Ep , Eg – модули деформации свай и грунта;

Sp , S – площади всех свай и общая площадь плиты.

По результатам расчетов максимальная осадка здания составила 6,8 см, минимальная осадка – 1,6 см, относительная разность осадок – 0,0015. Несмотря на то, что в этой методике не учитывается неравномерность расположения свай, результаты расчета по методу осреднения характеристик сопоставимы с результатами расчета свайно-плитного фундамента.

Прогнозируемая величина максимальной осадки свайно-плитного фундамента по результатам расчетов составила 5,7-6,8 см, что в 2 раза ниже предельной максимальной осадки 15,0 см, принятой по нормативным документам, что гарантирует безопасную эксплуатацию здания.

Из-за стесненности площадки оборудование (высоконапорный насос, миксерную станцию для приготовления цементного раствора и силос для цемента) пришлось разместить на борту котлована на площадке размерами 8,0х8,0 м. Работы по устройству грунтоцементных свай выполнялись из котлована глубиной 6,8 м.

Для контроля качества работ выполнены опытные сваи с последующим определением диаметра свай и определением прочности на сжатие выбуренного из свай керна. Диаметр грунтоцементных свай в песчаных грунтах составил 750-900 мм (фото 2). По результатам испытаний прочность грунтоцемента на сжатие составила 5-12 МПа, что превышает проектные характеристики.

Производительность устройства грунтоцементных свай длиной 10,2 м составила 6-8 свай в смену.

Фото 2. Грунтоцементная свая.

2. Проектирование свайно-плитного фундамента из комбинированных свай.

В настоящее время на Аккермановском руднике ведется строительство цементного завода. Первоначально для силоса сырьевой муки по проекту предполагался свайно-плитный фундамент из железобетонных забивных свай 30х30 см длиной 6,0 м.

Количество свай – 300 шт. Размер плиты – 18,8х18,8 м, толщина – 3,0 м. Общая нагрузка от силоса и плиты – 25 139 тс (71 тс/м2).

По предварительным изысканиям геология представляет собой глину, которую подстилает известняк. По проекту сваи должны были опираться на известняк. Но после начала бурения лидерных скважин для погружения свай оказалось, что кровля известняка имеет кратерообразный характер с пиками и впадинами, вследствие чего большая часть свай не доходят до кровли известняка, являющимся несущим слоем. Это может привести к ненормативным осадкам и крену силоса.

С целью снижения осадок до безопасного уровня было предложено в основании железобетонных свай выполнить грунтоцементные сваи по технологии струйной цементации грунтов (рис. 3).

Рис. 3. Разрез свайно-плитного фундамента. 1 – глина, 2 – известняк.

Моделирование напряженно-деформированного состояния свайно-плитного фундамента и грунтового массива выполнено с помощью метода конечных элементов в трехмерной постановке.

Дискретизацию расчетной области выполняли треугольными элементами с линейной аппроксимацией перемещений в области элемента. Конечно-элементная модель расчетной области представлена на рисунке 4.

Согласно геологическим изысканиям модуль деформации глины составляет 15 МПа, известняка – 1000 МПа.

Диаметр грунтоцементных свай по технологии Jet1 в глинистых грунтах принят равным 500 мм, модуль деформации грунтоцементных свай – 500 МПа.

Учет свай выполнялось путем задания расчетного слоя с осредненным модулем деформации по правилу механической смеси.

В расчетной модели было задано 4 слоя. Осредненные модули деформации слоев приведены в таблице 1.

Наименование слоя Е, МПа
1 Фундаментная плита 32 500
2 Глина с железобетонными сваями 2 972
3 Глина с грунтоцементными сваями 132
4 Известняк 1 000

Основная сложность заключалась в моделировании рельефа известняка, имеющего кратерообразный характер. В соответствие с проведенными дополнительными инженерно-геологическими данным на расчетную область нанесли точки, соответствующие отметкам кровли известняка, затем эти точки соединили поверхностями.

Выполненные расчеты показали, что максимальная осадка фундаментной плиты составила 1,8 см, что ниже принятого допустимого значения 5,0 см (рис. 5). Величина крена 0,0005 также не превышает допустимое значение 0,0020.

Рис. 4. Фрагмент конечно-элементной модели.

Рис. 5. График распределения осадки в грунтовом массиве, м.

На первом этапе выполняли устройство грунтоцементных свай по технологии струйной цементации грунтов (фото 3).

Скважины бурили до кровли известняка для установления его фактической отметки и на 1,0 м заглублялись в слой известняка. Затем производился подъем монитора до отметки на 1,0 м выше отметки низа железобетонных свай.

В процессе устройства грунтоцементных свай также были выявлены многочисленные прослойки известняка в слое глины, что усложняло бурение скважин.

На втором этапе производили забивку железобетонных свай с погружением их в тело грунтоцементных свай на 500 мм. Забивку свай производили с устройством лидерных скважин диаметром 250 мм.

Для контроля качества из опытных грунтоцементных свай был отобран керн и определены деформационные и прочностные характеристики грунтоцемента. Средняя прочность на сжатие составила – 2,5 МПа, модуль деформации – 543 МПа, модуль упругости – 1082 МПа. Результаты испытаний подтвердили заданные в проекте значения.

Фото 3. Устройство грунтоцементных свай.

3. Устройство свайно-плитного фундамента с применением грунтоцементных свай Jet2

В Нижний Новгороде при строительстве жилого здания также было принято решение о применении свайно-плитного фундамента из грунтоцементных свай. Размер фундаментной плиты – 21,0×43,9 м.

Основание фундамента здания сложены слабыми лессовыми грунтами (супеси, суглинки), склонными к большим просадкам при замачивании под действием давления, передаваемого фундаментной плитой. Физико-механические свойства грунтов представлены в таблице 2.

ИГЭ Тип грунта g, кН/м3 С, кПа j, ° Е, МПа h, м
3 Супесь лессовая твердая, плотная 20,5 15 27 15 16,2
4 Суглинок лессовый 19,7 18 19 11 4,3
5 Глина полутвердая 19,6 83 22 30

С целью снижения осадок до безопасного уровня предложено выполнить устройство грунтоцементных свай в основании фундаментной плиты. Сваи устраиваются по технологии Jet2, диаметр свай в суглинках принят равным 1,5 м.

Расчет осадки свайно-плитного фундамента выполнялся в программе GeoSet.

Оптимальная длина свай, полученная по результатам расчетов, составляет 28,0 м. Сваи устраиваются с шагом 4,3 м, в местах лифтовой шахты запроектировано дополнительно 4 сваи. Общее количество свай – 42 шт.

Модуль деформации грунтоцементных свай в глинистых грунтах – 1000 МПа.

В соответствие со схемой нагружения вычислена равнодействующая сила, равная 54 418 тс (59 тс/м2). Анализ схемы нагружения показал, что эксцентриситет равнодействующей силы составил по х – 0,46 м, по y – 0,04 м.

Средняя жесткость свай, вычисленная в программе, составляет Es = 6209 тс/м, жесткость грунтового основания – C = 59 тс/м2.

По результатам расчетов средняя осадка здания составила 17,0 см (рис. 6), что не превышает допустимую осадку для зданий на плитных фундаментов – 22,5 см.

Относительная разность осадок составила 0,003.

Ниже представлена фотография объекта на этапе откопки грунтоцементных сваи и возведения фундаментной плиты (фото 4).

Рис. 6. Осадка свайно-плитного фундамента.

Фото 4. Свайно-плитный фундамент с грунтоцементными сваями. Устройство фундаментной плиты.

Источник

Related Post

Три способа как найти угол 90 градусов с помощью рулетки без погрешностиТри способа как найти угол 90 градусов с помощью рулетки без погрешности

Три способа как найти угол 90 градусов с помощью рулетки без погрешности Сегодня на строительном рынке измерительные инструменты представлены в широком ассортименте от линейки до лазерных установок. Рассмотрим способы, как

Чем грозят трещины в фундаменте и как их заделатьЧем грозят трещины в фундаменте и как их заделать

Трещины в фундаменте после заливки Частым явлением при выполнении строительства своими руками или силами неквалифицированных рабочих являются трещины в фундаменте после заливки. Причин их образования множество и самостоятельно установить конкретную

Монтаж монолитного фундамента пошаговая инструкцияМонтаж монолитного фундамента пошаговая инструкция

Устройство монолитного фундамента для дома Для возведения любого строительного объекта требуется основание. Монолитный фундамент из бетона, армированный металлическим прутком, обладает необходимой прочностью. При самостоятельном строительстве жилья важно правильно выбрать тип

Adblock
detector